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Foreword 

There has been an ongoing debate on how best to document a software system 
ever since the first software system was built. Some would have us writing nat­
ural language descriptions, some would have us prepare formal specifications, 
others would have us producing design documents and others would want us 
to describe the software thru test cases. There are even those who would have 
us do all four, writing natural language documents, writing formal specifica­
tions, producing standard design documents and producing interpret able test 
cases all in addition to developing and maintaining the code. The problem 
with this is that whatever is produced in the way of documentation becomes 
in a short time useless, unless it is maintained parallel to the code. Maintain­
ing alternate views of complex systems becomes very expensive and highly 
error prone. The views tend to drift apart and become inconsistent. 

The authors of this book provide a simple solution to this perennial prob­
lem. Only the source code is maintained and evolved. All of the other infor­
mation required on the system is taken from the source code. This entails 
generating a complete set of UML diagrams from the source. In this way, the 
design documentation will always reflect the real system as it is and not the 
way the system should be from the viewpoint of the documentor. There can 
be no inconsistency between design and implementation. The method used is 
that of reverse engineering, the target of the method is object oriented code in 
C-I-+, C # , or Java. From the code class diagrams, object diagrams, interac­
tion diagrams and state diagrams are generated in accordance with the latest 
UML standard. Since the method is automated, there are no additional costs. 
Design documentation is provided at the click of a button. 

This approach, the result of many years of research and development, will 
have a profound impact upon the way IT-systems are documented. Besides 
the source code itself, only one other view of the system needs to be developed 
and maintained, that is the user view in the form of a domain specific lan­
guage. Each application domain will have to come up with it's own language 
to describe applications from the view point of the user. These languages may 
range from natural languages to set theory to formal mathematical notations. 
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What these languages will not describe is how the system is or should be con­
structed. This is the purpose of UML as a modeling language. The techniques 
described in this book demonstrate that this design documentation can and 
should be extracted from the code, since this is the cheapest and most reliable 
means of achieving this end. There may be some UML documents produced 
on the way to the code, but since complex IT systems are almost always de­
veloped by trial and error, these documents will only have a transitive nature. 
The moment the code exists they are both obsolete and superfluous. From 
then on, the same documents can be produced cheaper and better from the 
code itself. This approach coincides with and supports the practice of extreme 
programming. 

Of course there are several drawbacks, as some types of information are 
not captured in the code and, therefore, reverse engineering cannot capture 
them. An example is that there still needs to be a test oracle - something to 
test against. This something is the domain specific specification from which 
the application-oriented test cases are derived. The technical test cases can 
be derived from the generated UML diagrams. In this way, the system as 
implemented will be verified against the system as specified. Without the 
UML diagrams, extracted from the code, there would be no adequate basis of 
comparison. 

For these and other reasons, this book is highly recommendable to all 
who are developing and maintaining Object-Oriented software systems. They 
should be aware of the possibilities and limitations of automated post docu­
mentation. It will become increasing significant in the years to come, as the 
current generation of 00-systems become the legacy systems of the future. 
The implementation knowledge they encompass will most likely be only in the 
source and there will be no other means of regaining it other than through 
reverse engineering. 

Trento, Italy, July 2004 Harry Sneed 
Benevento, Italy, July 2004 Aniello Cimitile 



Preface 

Diagrams representing the organization and behavior of an Object Oriented 
software system can help developers comprehend it and evaluate the impact of 
a modification. However, such diagrams are often unavailable or inconsistent 
with the code. Their extraction from the code is thus an appealing option. 
This book represents the state of the art of the research in Object Oriented 
code analysis for reverse engineering. It describes the algorithms involved 
in the recovery of several alternative views from the code and some of the 
techniques that can be adopted for their visualization. 

During software evolution, availability of high level descriptions is ex­
tremely desirable, in support to program understanding and to change-impact 
analysis. In fact, location of a change to be implemented can be guided by 
high level views. The dependences among entities in such views indicate the 
proportion of the ripple effects. 

However, it is often the case that diagrams available during software evo­
lution are not consistent with the code, or - even more frequently - that no 
diagram has altogether been produced. In such contexts, it is crucial to be 
able to reverse engineer design diagrams directly from the code. Reverse engi­
neered diagrams are a faithful representation of the actual code organization 
and of the actual interactions among objects. Programmers do not face any 
misalignment or gap when moving from such diagrams to the code. 

The material presented in this book is based on the techniques devel­
oped during a collaboration we had with CERN (Conseil Europeen pour la 
Recherche Nucleaire). At CERN, work for the next generation of experiments 
to be run on the Large Hadron Collider has started in large advance, since 
these experiments represent a major challenge, for the size of the devices, 
teams, and software involved. We collaborated with CERN in the introduc­
tion of tools for software quality assurance, among which a reverse engineering 
tool. 

The algorithms described in this book deal with the reverse engineering of 
the following diagrams: 
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Class diagram: Extraction of inter-class relationships in presence of weakly 
typed containers and interfaces, which prevent an exact knowledge of the 
actual type of referenced objects. 

Object and interaction diagrams: Recovery of the associations among 
the objects that instantiate the classes in a system and of the messages 
exchanged among them. 

State diagram: Modeling of the behavior of each class in terms of states 
and state transitions. 

Package diagram: Identification of packages and of the dependences among 
packages. 

All the algorithms share a common code analysis framework. The basic 
principle underlying such a framework is that information is derived statically 
(no code execution) by performing a propagation of proper data in a graph 
representation of the object flows occurring in a program. The data structure 
that has been defined for such a purpose is called the Object Flow Graph 
(OFG). It allows tracking the lifetime of the objects from their creation along 
their assignment to program variables. 

UML, the Unified Modeling Language, has been chosen as the graphical 
language to present the outcome of reverse engineering. This choice was mo­
tivated by the fact that UML has become the standard for the representation 
of design diagrams in Object Oriented development. However, the choice of 
UML is by no means restrictive, in that the same information recovered from 
the code can be provided to the users in different graphical or non graphical 
formats. 

A well known concern of most reverse engineering methods is how to fil­
ter the results, when their size and complexity are excessively high. Since 
the recovered diagrams are intended to be inspected by a human, the pre­
sentation modes should take into account the cognitive limitations of humans 
explicitly. Techniques such as focusing, hierarchical structuring and element 
explosion/implosion will be introduced specifically for some diagram types. 

The research community working in the field of reverse engineering has 
produced an impressive amount of knowledge related to techniques and tools 
that can be used during software evolution in support of program under­
standing. It is the authors' opinion that an important step forward would be 
to publish the achievements obtained so far in comprehensive books dealing 
with specific subtopics. 

This book on reverse engineering from Object Oriented code goes exactly 
in this direction. The authors have produced several research papers in this 
field over time and have been active in the research community. The techniques 
and the algorithms described in the book represent the current state of the 
art. 

Trento, Italy Paolo Tonella 
July 2004 Alessandra Potrich 



Introduction 

Reverse engineering aims at supporting program comprehension, by exploiting 
the source code as the major source of information about the organization 
and behavior of a program, and by extracting a set of potentially useful views 
provided to programmers in the form of diagrams. Alternative perspectives 
can be adopted when the source code is analyzed and different higher level 
views are extracted from it. The focus may either be on the structure, on 
the behavior, on the internal states, or on the physical organization of the 
files. A single diagram recovered from the code through reverse engineering 
is insufficient. Rather, a set of complementary views need to be obtained, 
addressing different program understanding needs. 

In this chapter, the role of reverse engineering within the life cycle of a 
software system is described. The activities of program understanding and 
impact analysis are central during the evolution of an existing system. Both 
activities can benefit from sources of knowledge about the program such as 
reverse engineered diagrams. 

The reverse engineering techniques presented in the following chapters are 
described with reference to an example program used throughout the book. In 
this chapter, this example program is introduced and commented. Then, some 
of the diagrams that are the object of the following chapters are provided for 
the example program, showing their usefulness from the programmer's point 
of view. The remaining parts of the book contain the algorithmic details on 
how to recover them from the source code. 

1.1 Reverse Engineering 

In the life cycle of a software system, the maintenance phase is the largest 
and the most expensive. Starting after the delivery of the first version of the 
software [35], maintenance lasts much longer than the initial development 
phase. During this time, the software will be changed and enhanced over and 
over. So it is more appropriate to speak of software evolution with reference 
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to the whole hfe cycle, in which the initial development is only a special case 
where the existing system is empty. 

Software evolution is characterized by the existence of the source code of 
the system. Thus, the typical activity in software evolution is the implemen­
tation of a program change, in response to a change request. Changes may 
be aimed at correcting the software {corrective maintenance), at adding a 
functionality {perfective maintenance), at adapting the software to a changed 
environment {adaptive maintenance), or at restructuring it to make future 
maintenance easier {preventive maintenance) [35]. 

During software evolution, the most reliable and accurate description of 
the behavior of a software system is its source code. In fact, design diagrams 
are often outdated or missing at all. Such a valuable information repository 
may not directly answer all questions about the system. Reverse engineer­
ing techniques provide a way to extract higher level views of the system, 
which summarize some relevant aspects of the computation performed by the 
program statements. Reverse engineered diagrams support program compre­
hension, as well as restructuring and traceability. 

When an existing code base is worked on, the micro-process of program 
change can be decomposed into localizing the change, assessing the impact, 
and implementing the change. All such activities depend on the knowledge 
available about the program to be modified. In this respect, reverse engineer­
ing techniques are a useful support. Reverse engineering tools provide useful 
high level information about the system being maintained, thus helping pro­
grammers locate the component to be modified. Moreover, the relationships 
(dependencies, associations, etc.) that connect the entities in reverse engi­
neered diagrams provide indications about the impact of a change. By tracing 
such relationships the set of entities possibly aff"ected by a change are obtained. 

Object Oriented programming poses special problems to software engi­
neers during the maintenance phase. Correspondingly, reverse engineering 
techniques have to be customized to address them. For example, the behavior 
of an Object Oriented program emerges from the interactions occurring among 
the objects allocated in the program. The related instructions may be spread 
across several classes, which individually perform a very limited portion of 
the work locally and delegate the rest of it to others. Reverse engineered dia­
grams capture such collaborations among classes/objects, summarizing them 
in a single, compact view. However, recovering accurate information about 
such collaborations represents a special challenge, requiring major improve­
ments to the available reverse engineering methods [48, 100]. 

When a software system is analyzed to extract information about it, the 
fundamental choice is between static and dynamic analysis. Dynamic analysis 
requires a tracer tool to save information about the objects manipulated and 
the methods dispatched during program execution. The diagrams that can 
be reverse engineered in this way are partial. They hold valid for a single, 
given execution of the program, with given input values, and they cannot be 
easily generalized to the behavior of the program for any execution with any 



1.2 The eLib Program 3 

input. Moreover, dynamic analysis is possible only for complete, executable 
systems, while in Object Oriented programming it is typical to produce in­
complete sets of classes that are reused in different contexts. On the contrary, 
a static analysis produces results that are valid for all executions and for all 
inputs. On the other side, static analyses may be over-conservative. In fact, 
it is undecidable to determine if a statically possible path is feasible, i.e., if 
there exists an input value allowing its traversal. Static analysis may conserva­
tively assume that some paths are executable, while they are actually not so. 
Consequently, it may produce results for which no input value exists. In the 
following chapters, the advantages and disadvantages of the two approaches 
will be discussed for each specific diagram, illustrating them on an executable 
example. 

UML (Unified Modeling Language) [7, 69] has become the standard graphi­
cal language used to represent Object Oriented systems in diagrammatic form. 
Its specifications have been recently standardized by the Object Management 
Group (OMG) [1]. UML has been adopted by several software companies, and 
its theoretical aspects are the subject of several research studies. For these rea­
sons, UML was chosen as the graphical representation that is produced as the 
output of the reverse engineering techniques described in this book. However, 
the choice of UML is by no means limiting: while the information reverse 
engineered from the code can be represented in different graphical (or non 
graphical) forms, the basic analysis methods exploited to produce it can be 
reused unchanged in alternative settings, with UML replaced by some other 
description language. 

An important issue reverse engineering techniques must take into account 
is usability. Since the recovered views are for humans and not for computers, 
they must be compatible with the cognitive abilities of human beings. This 
means that diagrams convey useful information only if their size is kept small 
(while 10 entities may be fine, 100 starts being too much and 1000 makes a 
diagram unreadable). Several approaches can be adopted to support visual­
ization and navigation modes making reverse engineered information usable. 
They range from the possibility to focus on a portion of the system, to the 
expand/collapse or zoom in/out operations, or to the availability of an overall 
navigation map complemented by a detailed view. In the following chapters, 
ad hoc methods will be described with reference to the specific diagrams being 
produced. 

1.2 The eLib Program 

The eLib program is a small Java program that supports the main functions 
operated in a library. Its code is provided in Appendix A. It will be used in 
the remaining of this book as the example. 

In eLib, libraries are supposed to hold an archive of documents of different 
categories, properly classified. Each document can be uniquely identified by 
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the librarian. Library users can request some of these documents for loan, 
subjected to proper access rules. In order to borrow a document, users must be 
identified by the librarian. For example, this could be achieved by distributing 
library cards to registered users. 

As regards the management of the documents in the eLib system, the 
librarian can insert new documents in the archive and remove documents 
no longer available in the library. Upon request, the librarian may need to 
search the archive for documents according to some search criterion, such as 
title, authors, ISBN code, etc. The documents held by a library are of several 
different kinds, including books, journals, and technical reports. Each of them 
has specific properties and specific access restrictions. 

As far as user management is concerned, a set of personal data (name, 
address, phone number, etc.) are maintained in the archive. A special cate­
gory of users consists of internal users, who have special permission to access 
documents not allowed for loan to normal users. 

The main functionality of the eLib system is loan management. Users can 
borrow documents up to a maximum number. While books are available for 
loan to any user, journals can be borrowed only by internal users, and technical 
reports can be consulted but not borrowed. 

Although this is a small application, by going through the source code 
of the eLib program (see Appendix A) it is not so easy to understand how 
the classes are organized, how they interact with each other to fulfill the 
main functions, how responsibilities are distributed among the classes, what 
is computed locally and what is delegated. For example, a programmer aiming 
at understanding this application may have the following questions: 

• What is the overall system organization? 
• What objects are updated when a document is borrowed? 
• What classes are responsible to check if a given document can be borrowed 

by a given user? 
• How is the maximum number of loans handled? 
• What happens to the state of the library when a document is returned? 

Let us assume the following change request (perfective maintenance): 

When a document is not available for loan, a user can reserve it, if it 
has not been previously reserved by another user. When a document 
is returned to the library, the user who reserved it is contacted, if 
any is associated with the document. The user can either borrow the 
document that has become available or cancel the reservation. In both 
cases, after this operation the reservation of the document is deleted. 

the programmer who is responsible for its implementation may have the fol­
lowing questions about the system: 

• Does the overall system organization need any change? 
• What classes need to collaborate to realize the reservation functionality? 
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• Is there any possible side effect on the existing functionalities? 
• What changes should be made in the procedure for returning documents 

to the library? 
• How is the new state of a document described? 
• Is there any interaction between the new rules for document borrowing 

and the existing ones? 

In the following sections, we will see how UML diagrams reverse engineered 
from the code can help answer the program understanding and impact analysis 
questions listed above. 

1.3 Class Diagram 

The class diagram reverse engineered from the code helps understand the 
overall system's organization and the kind of interclass connections that exist 
in the program. 

User 

userCode: int 
fullName: String 
address: String 
phoneNumber: String 

authorizedUser(): boolean 
printlnfoO 

Library 

addUser(user: User): boolean 
removeUser(userCode: int): boolean 
addDocument(doc: Document): boolean 
removeDocument(docCode: int): boolean 
borrowDocument(user: User, doc: Document): boolean 
returnDocument(doc: Document): boolean 
searchUser(name: String): List 
searchDocumentByTitle(title: String): List 
searchDocumentByAuthors(authors: String): List 
searchDocumentBylSBN(isbn: String): int 

"TV 

InternalUser 

internalld: String 

authorizedUserQ: boolean authorizedLoan(user: User): boolean 

Document 

documentCode: int 
title: String 
authors: String 
ISBNCode: String 

isAvailabie(): boolean 
authorizedLoan(user: User): boolean 
printlnfoO 
printAvailabilityO 

"ZV 

TechnicalReport 

refNo: String 

authorizedLoan(user: User): boolean 

Fig. 1.1. Class diagram for the eLib program. 

Fig. 1.1 shows the class diagram of the eLib program, including all inter­
class dependencies. The UML graphical language has been adopted, so that 
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dashed lines indicate a dependency, solid lines an association and empty ar­
rows inheritance. The exact meaning of the notation will be clarified in the 
following chapters. An intuitive idea is sufficient for the purposes of this sec­
tion. Only some attributes and methods inside the compartments of each class 
have been selected for display. 

The overall architecture of the system is clear from Fig. 1.1. The class 
Library provides the main functionalities of the eLib program. For example, 
library users are managed through the methods addUser and removeUser, 
while documents to be archived or dismissed are managed through addDocu-
ment and removeDocument. The objects that respectively represent users and 
documents belong to the two classes User and Document. As apparent from 
the class diagram, there are two kinds of users: normal users, represented as 
objects of the base class User, and internal users, represented by the subclass 
In te rna lUser . Library documents are also classified into categories. A library 
can manage journals (class Journal) , books (class Book), and technical reports 
(class TechnicalReport) . All these classes extend the base class Document. 

The attributes of class User aim at storing personal data about library 
users, such as their full name, address and phone number. A user code (at­
tribute userCode) is used to uniquely identify each user. This could be read 
from a card issued to library users (e.g., reading a bar code). In addition to 
that, internal users are identified by an internal code (attribute i n t e r n a l l d 
of class In te rna lUser ) . 

Objects of class Document are identified by a code (attribute document-
Code), and possess attributes to record the title, authors and ISBN code. 
Technical reports obey an alternative classification scheme, being identified 
also by their reference number (attribute ref No). 

A Library holds the list of its users and documents. This is represented in 
the class diagram by the two associations respectively toward classes User and 
Document (labeled u se r s and documents, resp.). These associations provide a 
stable reference to the collection of documents and the set of users currently 
handled. 

The process of borrowing a document is objectified into the class Loan. 
A Library manages a set of current loans, indicated in the class diagram 
as an association toward class Loan (labeled loans). A Loan consists of a 
User (association labeled user) and a Document (association document). It 
represents the fact that a given user borrowed a given document A Library 
can access the list of its active loans through the association loans and from 
each Loan object, it can obtain the User and Document involved in the loan. 

The two associations, between Loan and User, and between Loan and 
Document, are made bidirectional by the addition of a reverse link (from User 
to Loan and from Document to Loan resp.). This allows getting the set of loans 
of a given user and the loan (if any exists) associated to a given document. 
The chain from users to documents, and vice versa, can thus be closed. Given 
a user, it is possible to access her/his loans (association loans) , and from each 
loan, the related Document object. In the other direction, given a Document, 
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it is possible to see if it is borrowed (association loan leads to a non-null 
object), and in case a Loan object exists, the user who borrowed the document 
is accessible through the association user (from Loan to User). 

Class Library establishes the relationships between users and documents, 
through Loan objects, when calls to its method borrowDocument are issued. 
On the contrary, the method returnDocument is responsible for dropping Loein 
objects, thus making a document no longer connected to a Loan object, and 
diminishing the number of loans a user is associated with. When a document is 
requested for loan by a user, the Library checks if it is available, by invoking 
the method i sAva i l ab le of class Document, and if the given user is authorized 
to borrow the document, by invoking the method authorizedLoan inside 
class Document. Since loan authorization depends also on the kind of user 
issuing the request (normal vs. internal user), a method authorizedUser is 
provided inside the class User to distinguish normal users from users with 
special loan privileges. The method authorizedLoan is overridden when the 
default authorization policy, implemented by the base class Document, needs 
be changed in a subclass (namely, TechnicalReport and Journal) . Similarly, 
the default authorization rights of normal users, defined in the base class User, 
are redefined inside In te rna lUser . 

Search facilities are available inside the class Library. Users can be 
searched by name (method searchUser), while documents can be searched by 
title (method searchDocumentByTitle), authors (method searchDocument-
ByAuthors), or ISBN code (method searchDocumentBylSBN). Retrieved users 
can be associated with the documents they borrowed and retrieved documents 
can be associated with the users who borrowed them (if any) as explained 
above. 

Print facilities are available inside classes Library, User, Document, and 
Loan (for clarity, some of them are not shown in Fig. 1,1). The method 
p r i n t Info is a function to print general information available from the classes 
User and Document. The method p r i n t A v a i l a b i l i t y inside class Document 
emits a message stating if a given document is available or was borrowed. In 
the latter case, information about the user who borrowed it is also printed. 

The mutual dependencies between classes User and Document (dashed 
lines in Fig. 1.1) are due to the invocation of methods to gather informa­
tion that is displayed by some printing function. For example, the method 
p r i n t Info of class User displays personal user data, followed by the list 
of borrowed documents. Information about such documents is obtained by 
traversing the two associations locins and document, leading to a Document 
object for each borrowed item. Then, calls to get data about each Document 
(e.g., method g e t T i t l e ) are issued. Hence, the dependency from User to 
Document. Symmetrically, method p r i n t A v a i l a b i l i t y of class Document ac­
cesses user data (e.g., calling method getName), in case a User borrowed the 
given Document. This happens when the association loan is non-null. The di­
rect invocation from Document to User is the cause of the dependency between 
these two classes. 
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Authorization to borrow documents is handled in a straightforward way 
inside the classes Document and TechnicalReport , which return a constant 
value (resp. t r u e and f a l s e ) and do not use at all the parameter user received 
upon invocation of authorizedLoan. On the other side, the class Journal 
returns a value that depends on the privileges of the parameter user . This is 
achieved by calling authorizedUser from authorizedLoan inside Journal . 
This direct call from Journal to User explains the dependency between these 
two classes in the class diagram. 

Chapter 3 provides an algorithm for the extraction of the class diagram in 
a context similar to that of the eLib program, where weakly typed containers 
and interfaces are used in attribute and variable declarations. 

1.4 Object Diagram 

The object diagram focuses on the objects that are created inside a program. 
Most of the object creations for the classes in the eLib program are performed 
inside an external driver class, such as that reported in Appendix B. 

The static object diagram represents all objects and inter-object relation­
ships possibly created in a program. The dynamic object diagram shows the 
objects and the relationships that are created during a specific program exe­
cution. 

Fig. 1.2. Static (left) and dynamic (right) object diagram for the eLib program. 

Fig. 1.2 depicts both kinds of object diagrams for the eLib program. In 
the static object diagram, shown on the left, each object corresponds to a 
distinct allocation statement in the program. Thus, for the eLib program un­
der analysis (Appendixes A and B), there is one allocation point for creating 
objects of the classes L ibra ry , Book, Jou rna l , TechnicalReport , User, 
In te rna lUser . No object of class Document is ever allocated, while objects of 
class Loan are allocated by three different statements inside the class Library. 
One such allocation (line 60) belongs to the method borrowDocument, and pro­
duces the object named Loanl, another one (hne 70) is inside returnDocument 
and produces Loan2, while the third one (line 78), inside isHolding, produces 
Loans. 
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As apparent from the diagram in Fig. 1.2 (left), the object allocated inside 
borrowDocument (Loanl) is contained inside the list of loans possessed by the 
object Library 1, which represents the whole library. Locinl references the 
document and the user participating in the loan. These are objects of type 
Book, Jou rna l , TechnicalReport and User, In te rna lUser respectively, 
as depicted in the static object diagram. In turn, they have a reference to 
the loan object (bidirectional link in Fig. 1.2). On the contrary, the objects 
Loan2 and Loan3 are not accessible from the list of loans held by Library 1. 
They are temporary objects created to manage the deletion of a loan (method 
returnDocument, line 70) and to check the existence of a loan between a given 
user and a given document (method isHolding, line 78). However, none of 
them is in turn referenced by the associated user/document (unidirectional 
link in Fig. 1.2). 

The dynamic object diagram on the right of Fig. 1.2 was obtained by ex­
ecuting the eLib program under the following scenario: 

Time Operation 
1 I An internal user is registered into the library. 
2 Another internal user is registered. 
3 A book is archived into the library 
4 Another book is archived. 
5 A journal is archived into the library. 
6 I The journal archived at time 5 is borrowed by the first 

registered user. 
The journal borrowed at time 6 is returned to the library and 
the loan is closed. 
The librarian verifies that the loan was actually closed. 

The time intervals indicating the life span of the inter-object relationships 
are in square brackets. The objects I n t e r n a l U s e r l , In te rna lUser2 repre­
sent the two users created at times 1 and 2, while Bookl, Book2, Jou rna l l 
are the objects created when two books and a journal are archived into 
the library, at times 3, 4, 5 respectively. When a loan is opened between 
I n t e r n a l U s e r l and J o u r n a l l at time 6, the object Loanl is created, refer­
encing, and referenced by, the user and document involved in the loan. At time 
7 the loan is closed. Correspondingly, the life interval of all associations linked 
to Loanl is [6-7], including the association from the object L ibrary 1, repre­
senting the presence of Loanl in the list of currently active loans (attribute 
loans of the object L ib ra ry l ) . Loan deletion is achieved by looking for a Loan 
object (indicated as Loan2 in the object diagram) in the list of the active loans 
(L ib ra ry l . l oans ) . Loan2 references the document ( Journa l l ) and the user 
( In t e rna lUse r l ) that are participating in the loan to be removed. Being a 
temporary object, LocLn2 disappears after the loan deletion operation is fin­
ished, together with its associations (life span [7-7]). The object LoanS has a 
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similar purpose. It is temporarily created to verify if L i b r a r y l . loans contains 
a Loan which references the same user and document (resp., I n t e rna lUse r l 
and j o u r n a l l ) as LoanS. After the check is completed, LoanS and its associ­
ations are dismissed (hfe span [8-8]). 

Static and dynamic object diagrams provide complementary information, 
extremely useful to understanding the relationships among the objects that are 
actually allocated in a program. The existence of three different roles played 
by the objects of class Loan is not visible in the class diagram. It becomes 
clear once the object diagram for the eLib application is built. Moreover, 
the analysis of the dynamically allocated objects during the execution of a 
specific scenario allows understanding the way relationships are created and 
destroyed at run time. Temporary objects and relationships, used only in the 
scope of a given operation, can be distinguished from the stable relationships 
that characterize the management of users, documents and loans performed 
by the library. Moreover, the dynamics of the inter-object relationships that 
take place when a document is borrowed or returned also become explicit. 
Overall, the structure of the objects instantiated by the eLib program and of 
their mutual relationships, which is somewhat implicit in the class diagram, 
becomes clear in the object diagrams recovered from the code and from the 
program's execution. 

Static and dynamic object diagram extraction is thoroughly discussed in 
Chapter 4. 

1.5 Interaction Diagrams 

The exchange of messages among the objects created by a program can be 
displayed either by ordering them temporally (sequence diagrams) or by show­
ing them as labels of the inter-object relationships (collaboration diagrams). 
These are the two forms of the interaction diagrams. Each message (method 
call) is prefixed by a Dewey number (sequence of dot-separated decimal num­
bers), which indicates the flow of time and the level of nesting. Thus, a method 
call numbered 3.2 will be the second call nested inside another call, numbered 
3. 

Fig. 1.3 clarifies the interactions among objects that occur when a docu­
ment is borrowed by a library user. The first three operations shown in the 
collaboration diagram in Fig. 1.3 (numbered 1, 2, 3) are related to the rules 
for document loaning implemented in the eLib program. In fact, the first op­
eration (call to numberOf Loans) is issued from the Library object to the 
user who intends to borrow a document. The result of this operation is the 
number of loans currently held by the given user. The borrowing operation 
can proceed only if this number is below a predefined threshold (constant 
MAX_NUMBER_OF_LOANS in class Library) . 
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4: addLoan 

2: isAvailable 
3: authorizedLoan 

4.4: addLoan 

JournaM: Journal 
BQQKI : Book 

TechnicalReportI: TechnicalReport 

3.1: authorizedUser 

Fig. 1.3. Collaboration diagram focused on method borrowDocument of class 
Library. 

The second check is about document availability (call to i sAva i lab le ) . 
Of course, the document must be available in the library, before a user can 
borrow it. 

The third check implements the authorization policy of the library. Not 
all kinds of users are allowed to borrow all kinds of documents. The call 
to authorizedLoan, issued from the Library object, is processed differently 
by different targets. When the target is a Book or a TechnicalReport ob­
ject, it is processed locally. Actually, in the first case the constant t r u e is 
returned (books can be borrowed by all kinds of users), while in the sec­
ond case, f a l s e is always returned (technical reports cannot go out of the 
library). When the target of authorizedLoan is a Journal , a nested call to 
the method authorizedUser , numbered 3.1, is made, directed to the user 
requesting the loan. Since the actual target can be either a User (normal 
user) or an In te rna lUser , two different return values are produced in these 
two cases. The constants f a l s e and t r u e are two such values, meaning that 
normal users are not allowed to borrow journals, as are internal users. 

If all checks (messages 1, 2, 3) give positive answers, document borrow­
ing can be completed successfully. This is achieved by calling the method 
addLoan from class L ibra ry (call number 4). The parameter of this method 
is a new Loan object, which references the user requesting the loan and the 
document to be borrowed. Inside addLoan, such a parameter is queried to get 
the User and Document involved in the loan (method calls numbered 4.1 and 
4.2). Then, the operation addLoan is invoked both on the User (call 4.3) and 
on the Document (call 4.4) object. The effect of addLoan on the user (User or 
In te rna lUser ) is the creation of a reverse link with the Loan object (see bidi­
rectional association between Loanl and I n t e r n a l U s e r l , Userl in Fig. 1.2, 
left). This is achieved by adding the Loan object to the list of loans held by the 
given user. Similarly, the effect of addLoan on the document ( Journa l , Book 
or TechnicalReport) , is the creation of a reference link to the Loan object, 
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so that the bidirectional association between Loanl and J o u r n a l l , Bookl, 
TechnicalRepor t l in Fig. 1.2 (left) is completed. 

Analysis of the interactions among objects in the case of document bor­
rowing highlights the dynamics by which the inter-object structure is built. 
While Fig. 1.2 focuses on the structure of the associations among the objects, 
the interaction diagram in Fig. 1.3 shows how such associations are put into 
existence. The checks conducted before creating a new loan are explicitly in­
dicated, and the steps to connect objects with each other are represented in 
the sequence of operations performed. 

Bookl: Book 

TechnicalReportl: TechnicalReport 
jQurnaH: Journal 

Fig. 1.4. Sequence diagram focused on method returnDocument of class Library. 

The sequence diagram in Fig. 1.4 represents the interactions occurring over 
time among objects when a borrowed document is returned to the library. First 
of all, a check is made to see if the returned document is actually recorded as a 
borrowed document in the library (call to isOut, number 1). Another method 
of the class Document is exploited to get the answer (nested call i sAvai lab le , 
number 1.1). 

If the returned Document happens to be actually out, the operation 
returnDocument can proceed. Otherwise it is interrupted. The user holding 
the document being returned is obtained by calling the method getBorrower 
on the given document. This call is numbered 2. In turn, the Book, Techni­
calReport or Journal objects that receive such a call do not have any direct 
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reference to the user who borrowed them. However, they have a reference to 
the related Loan object. Thus, they can request the Loan object (Loanl) to 
return the borrowing user (nested call 2.1, getUser). 

Once information about the Document and User objects participating in 
the loan to be closed have been gathered, it is possible to call the method 
removeLoan from class Library and actually delete all references to the re­
lated Loan object. In order to identify which Loan object to remove, the 
method removeLoan needs a temporary Loan object to be compared with 
the Loan objects recorded in the Library. In Fig. 1.4, such a temporary Loam 
object is named Loan2, while Loan objects stored in the Library are named 
Loanl. 

Deletion of the Loan object in the Library that is equal to Loan2 is 
achieved by means of a call to the method remove of class Co l l ec t i on (see 
line 52), which in turn uses an overridden version of method equals (see class 
Loan line 146). Deletion of the references to the Loan object from Document 
and User objects requires a few nested calls. First of all, the two referenc­
ing objects are made accessible inside the method removeLoan, by calhng 
getUser and getDocument (calls numbered 3.1 and 3.2) on the temporary 
Loan object (Loan2). Then, deletion of the references to the Loan object is 
obtained by invoking removeLoan on both User ( i n t e rna lUse r l or Userl) 
and Document (Bookl, Technica lRepor t l , Jou rna l l ) objects (calls num­
bered 3.3 and 3.4). At this point, deletion of the bidirectional association 
between Library and User and of that between Library and Document is 
completed. 

With reference to the static object diagram in Fig. 1.2 (left), the se­
quence diagram in Fig. 1.4 clarifies the dynamics by which the associations of 
L ib ra ry l with the other objects are dropped. As one would expect, returning 
a document to the library causes the removal of the association with Loanl, 
the Loan object referenced by the Library object L ib ra ry l , and the removal 
of the reverse references from User ( In t e rna lUse r l or Userl) and Document 
(Bookl, Techn ica lRepor t l , Jou rna l l ) . The only check being applied ver­
ifies whether the returned document is actually registered as a borrowed doc­
ument (with associated loan data). Since the data structure used to record 
the loans inside class Library is a Col lec t ion , an overridden version of the 
method equals can be used to match the Loan to be removed with the ac­
tually recorded Loan. Two Loan objects are considered equal if in turn the 
referenced User and Document objects are equal (see lines 148, 149 in class 
Loan). This requires that the method equals be overridden by classes User 
and Document as well (see lines 295 and 172). 

The sequence diagram in Fig. 1.4 helps programmers to clarify the op­
erations carried out when documents are returned. Reading the source code 
with such a diagram available simplifies the program understanding activity, 
in that method calls spread throughout the code are concentrated in a single 
diagram. Of course, the diagram itself cannot tell everything about the behav­
ior of specific methods, so that a look at their body is still necessary. However, 
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the overall picture assumes a concrete form - the sequence diagram - instead 
of existing only in the mind of the programmer who understands the code. For 
larger systems, the support coming from these diagrams is potentially even 
more important, given the cognitive difficulties of humans confronted with a 
large number of interacting entities. 

The construction of collaboration and sequence diagrams is presented in 
Chapter 5. An algorithm for the computation of the Dewey numbers associated 
with the method calls is described in the same chapter. It determines the flow 
of the events in sequence diagrams. A focusing method to produce diagrams 
for specific computations of interest is also provided. 

1.6 State Diagrams 

State diagrams are used to represent the states possibly assumed by the ob­
jects of a given class, and the transitions from state to state possibly triggered 
by method invocations. The joint values of an object's attributes define its 
"complete" state. However, it is often possible to select a subset of all the 
attributes to characterize the state. Moreover, the set of all possible values 
can usually be abstracted into a small set of symbolic values. In this way, the 
size of the state diagrams can be kept limited, fitting the cognitive abihties of 
humans. 

so {loans=empty} 

addLoan removeLoan 

SO {loan=null) S1 {loans=one} 

addLoan removeLoan addLoan 

addLoan 

S1 {loan=Loan1} a 
removeLoan 

removeLoan 

S2 {loans=many} D 
Fig. 1.5. State diagram for class Document (left) and User (right). 

The state of an object of class Document of the eLib program can be char­
acterized by the physical presence/absence of the related item in the library. 
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Different behaviors are obtained by invoking methods on a Document object, 
when such an object is available for loan, rather than being out, borrowed by 
some library user. 

Among the attributes of class Document, the one which characterizes the 
state of its objects is loan. In fact, a n u l l value of loan indicates that the 
document is available for loan, while a non null value indicates that the doc­
ument is currently borrowed, with the related Loan object referenced by the 
attribute loam. 

Fig. 1.5 (left) shows the state diagram reverse engineered from the code 
of class Document. Its two states SQ and 5i indicate respectively the situation 
where the document is available for loan (tagged value loan=null in braces) 
or is loaned (tagged value loan=Loanl). Initially, the document is available 
(edge from the initial state, indicated as a small solid filled circle, to 5o)-

Interesting information conveyed by Fig. 1.5 (left) regards the states in 
which method calls can be accepted. In state SQ (document available) the 
only admitted operation is addLoan. It is not possible to request the removal 
of a loan associated to the given Document in state S^. On the other side, 
when the document is loaned (state 5 i ) , the only admitted operation is the 
closure of the loan (removeLoan), and no request can be accepted to borrow 
the given document (no call of addLoan admitted). This is consistent with 
the intuitive semantics of document borrowing: it makes no sense returning 
available documents as well as borrowing loaned documents. 

The state of the objects that belong to the class User is identified by the 
values of the attribute loans , which records the set of loans a given library 
user has made. Since this attribute is a container of objects of the type Loan, 
it is possible to abstract its concrete values into three symbolic values: empty 
(no element in the container), one (exactly one element in the container) and 
many (more than one element in the container). 

Fig. 1.5 (right) shows the state transitions that characterize the lifetime of 
the objects of class User. Initially, they are associated to no loan (edge from 
the smah solid filled circle to 5o). In this state the removeLoan operation 
is not admitted, and the only possibility is to add a new loan, by invoking 
the method addLoan. This corresponds to the expected behavior of a User 
object, which initially can only be involved in borrowing documents, and not 
in returning them. 

When the User object contains exactly one Loan (state 5 i ) , it is possible to 
close it, by returning the related document (call to removeLoan) and moving 
it back to state ASQ, or to add another loan (call to addLoan), moving it to the 
state 52, which represents more than one document loaned by a given user. 

Finally, in state ^2 the addition of further loans does not modify the state 
of the given object, while the closure of a loan (removeLoan) may either trigger 
the transition to state 5 i , if after the removal only one loan remains, or to 52 
itself. 

Similar to the class Document, some preconditions on the admitted method 
invocations are revealed by the state diagram for class User. In particular, no 
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call to removeLoan is accepted in the state assumed by a User object after 
its creation (^o), when no loan has yet been created by the given user. 

addDocument 
SO (<e, e, e>} S1 {<s, e, e>} 

removeUser 
removeDocument 

addUser 

removeDocument 

^ addDocument 

addDocument 
removeDocument 
removeUser 

removeUser 

S2 {<e, s, e>} S3 (<s, s, e>} 

addUser 
removeUser 
removeDocument 

removeDocument \ 

addLoan 

addDocument 
removeDocument 

addUser 
removeUser 

addUser 
removeUser 

addDocument 
removeDocument 

removeLoan 

CV S4 {<s, s, s>} 

addLoan 
removeLoan 

Fig. 1.6. State diagram for class Library. 

The state of the objects of the class Library is characterized by the 
joint values assumed by the class attributes documents, u se r s and loans. 
The attribute documents contains a mapping from document identifiers 
(documentCode) to the related Document objects stored in the library. Simi­
larly, u se r s holds the mapping from user identifiers (userCode) to User ob­
jects. Thus, they can be regarded as containers, storing documents possessed 
by the library and the users registered in the library. 

The attribute loans is a container of type Col lec t ion , which maintains 
the set of currently active loans in the library. A Loan references the library 
user who requested the document as well as the borrowed document. 

Since the three attributes documents, u se r s and loans are containers of 
other objects, it is possible to abstract the values they can assume by means 
of two symbolic values: e, indicating an empty contamer, and s, indicating 
that some (i.e., one or more) objects are stored inside the container. Thus, 
the joint values of the three considered attributes is represented by a triple, 
such as < e,5,e >, whose elements correspond respectively to documents, 
u se r s and loans (thus, < e,s,e> should read documents = empty, users = 
some, loans = empty). 

Fig. 1.6 shows the state diagram of class Library, characterized by the 
triples of joint values of documents, u se r s and loans . When no user is 
yet registered and no document is available in the library, invocations of 
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addDocument and addUser change the initial state 5o into Si or 52 respec­
tively. Addition of a new user in Si or of a document in ^2 moves the library 
into state S3, where some users are registered and some documents are avail­
able. Transitions among the states So,Si,S2, S3 are achieved by calling meth­
ods addUser, removeUser, addDocument, removeDocument. No special con­
straint is enforced with respect to such method invocations. Of course, removal 
methods have no effect when containers are empty (e.g., removeDocument in 
state ^ i ) . 

Overall, the four topmost states in Fig. 1.6 describe the management of 
users and documents. The librarian can freely add/remove users and docu­
ments, changing the library state from 5o to Si,S2,Ss. 

Creation or deletion of a loan is possible only in state ^3 , where some 
documents are available in the library and some users are registered. This 
is indicated by the absence of edges labeled addLoan in the states 5o, 5 i , 52 
of the state diagram and by the presence of such an edge in the state 53 
(as well as 54). Actually, the corresponding precondition on the invocation of 
addLoan is checked by the calling methods. In the source code for the eLib 
program (see Appendix A), the only invocation to addLoan is at line 61 inside 
borrowDocument. This call is preceded by a check to verify that the involved 
User object and Document object (parameters of borrowDocument obtained 
from the library at lines 438, 439) be not null. This ensures that no call to 
addLoan is issued when no related user or document data are stored in the 
library. 

Another interesting information that can be obtained from the state di­
agram in Fig. 1.6 is about the methods that can be invoked in 54. In this 
state, the library holds some documents, it has some registered users, and 
some loans are active. It is not possible to reach any of the states 5o, 5 i , 52 
directly from 54. The only reachable state is 53, which becomes the new state 
of the library when all active loans are removed. In other words, the state di­
agram constrains the legal sequences of operations that jointly modify users, 
documents and loans. Before removing all of the users or documents from the 
library, it is necessary to close all of the active loans. 

The code implements the rules described above by performing some checks 
before proceeding with the removal of the given item from the respective 
container. As regards the method removeUser, at line 17, the number of loans 
associated with the user being removed is requested, and if it is greater than 
zero, the removal operation is aborted. Similarly, inside removeDocument, at 
line 33 the removal operation is interrupted if the document is out (i.e., some 
loan is associated with it). Thus, before deleting a user, all of the related 
loans must be closed, i.e., users can unregister from the library only if all of 
the documents they borrowed have been returned. Dually, d9cuments can be 
dismissed only after being returned by the users who borrowed them. These 
two constraints on the joint values of the attributes document, u s e r s , loans 
are revealed by the transitions outgoing from state 54 in the state diagram. 
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State diagrams and their recovery from the source code are presented in 
detail in Chapter 6. 

1.7 Organization of the Book 

The remainder of the book describes the algorithms that can be used to pro­
duce the diagrams presented in the previous sections for the eLib program, 
starting from its source code. 

Most of the static analyses used to reverse engineer these diagrams share a 
common representation of the code called the Object Flow Graph (OFG). Such 
a data structure is presented in Chapter 2. This chapter contains the rules 
for the construction of the OFG and introduces a generic flow propagation 
algorithm that can be used to infer properties about the program's objects. 
Specializations of the generic algorithm are defined for specific properties. 

The basic algorithm for the recovery of the class diagram is presented at 
the beginning of Chapter 3. Here, the rules for the recovery of the various 
types of associations, such as dependencies and aggregations, are discussed. 
One problem of the basic algorithm for the recovery of the class diagram is 
that declared types are an approximation of the classes actually referenced 
in a program, due to inheritance and interfaces. An OFG based algorithm is 
described that improves the accuracy of the class diagram extracted from the 
source code, when classes belonging to a hierarchy or implementing interfaces 
are referenced by class attributes. Another problem of the basic algorithm is 
related to the usage of weakly typed containers. Associations determined from 
the types of the container declarations are in fact not meaningful, since they 
do not specify the type of the contained objects. It is possible to recover the 
information about the contained objects by exploiting a flow analysis defined 
on the OFG. 

Chapter 4 describes a technique for the static identification of class in­
stances (objects) in the code. The allocation points in the code are used to 
approximate the set of objects created by a program, while the OFG is used 
to determine the inter-object relationships. A dynamic method for the pro­
duction of the object diagram is also presented. Then, the diff'erences between 
static and dynamic approach are discussed. 

Interaction diagrams are obtained by augmenting the object diagram with 
information about message exchange (method invocations). In Chapter 5, the 
sequence of method dispatches is considered and their ordering is represented 
in the two forms of the interaction diagrams: either as collaboration diagrams, 
which emphasize the message flows over the structural organization of the 
objects, or as sequence diagrams, which emphasize the temporal ordering. The 
numbering algorithm, used to order events temporally, is also described in this 
chapter. In order for the approach to scale to large systems, it is complemented 
by an algorithm to handle incomplete systems, and by a focusing technique 
that can be used to locate and visualize only the interactions of interest. 
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Chapter 6 deals with the partitioning of the possible values of an object's 
attributes into equivalence classes, vital to testing, which are approximated 
by means of static code analysis. The effects of method invocations on the 
class attributes determine the state transitions, i.e., the possibility that a 
given method invocation changes the state of the target object. The usage of 
abstract interpretation techniques for state diagram recovery is presented in 
detail in this chapter. 

Chapter 7 is focused on the package diagram. Packages represented in the 
package diagram are groupings of design entities (typically classes) identified 
in the previous steps. The relationships that hold among such entities are 
abstracted into dependences among the packages they belong to. Techniques 
for the identification of cohesive groups of classes, including clustering and 
concept analysis, are presented in this chapter. 

The last chapter contains some considerations on the development of tools 
that implement the techniques presented in the previous chapters. Then, the 
eLib program is considered once again, to describe the usage of reverse engi­
neering after change implementation. Reverse engineered diagrams help un­
derstand the overall program organization and locate the code portions sub­
jected to change. They are also useful after implementing the change, in that 
they can be compared with the initial diagrams, thus revealing the impact of 
the change at the design level, possibly indicating the opportunity of refactor-
ing interventions. Furthermore, they support testing by providing information 
for the generation of class and integration test cases. Reverse engineered dia­
grams for the eLib program obtained after its modification are commented in 
this chapter. Finally, a survey of the existing support and of the current prac­
tice in reverse engineering is provided in the last section, where a discussion 
on the future trends and perspectives concludes the book. 

All central chapters (2 through 7) have a similar structure: after a theo­
retical presentation of the analysis algorithms, which usually includes small 
code fragments used as examples, the eLib program is used as input for the de­
scribed techniques and a step by step execution of the algorithms is conducted 
on this program. A discussion of related work concludes each chapter. 



The Object Flow Graph 

The Object Flow Graph (OFG) is the basic program representation for the 
static analysis described in the following chapters. The OFG allows tracing 
the flow of information about objects from the object creation by allocation 
statements, through object assignment to variables, up until the storage of 
objects in class fields or their usage in method invocations. 

The kind of information that is propagated in the OFG varies, depending 
on the purposes of the analysis in which it is employed. For example, the 
type to which objects are converted by means of cast expressions can be 
the information being propagated, when an analysis is defined to statically 
determine a more precise object type than the one in the object declaration. 
Thus, in this chapter a flow propagation algorithm is described, with a generic 
indication of the object information being processed. 

In the first section of this chapter, the Java language is simplified into an 
abstract language, where all features related to the object flow are maintained, 
while the other syntactic details are dropped. This language is the basis for 
the definition of the OFG, whose nodes and edges are constructed according 
to the rules given in Section 2.2. Objects may flow externally to the analyzed 
program. For example, an object may flow into a library container, from which 
it is later extracted. Section 2.3 deals with the representation of such external 
object flows in the OFG. The generic flow propagation algorithm working 
on the OFG is described in Section 2.4. Section 2.5 considers the differences 
between an object insensitive and an object sensitive OFG. Details of OFG 
construction are given for the eLib program in the next Section. A discussion 
of the related works concludes this chapter. 

2.1 Abstract Language 

The static analysis conducted on Java programs to reverse engineer design 
diagrams from the code is data flow sensitive, but control flow insensitive. This 
means that programs with different control flows and the same data flows are 
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associated with the same analysis results. Data flow sensitivity and control 
flow insensitivity are achieved by defining the analyses with reference to a 
program representation called the Object Flow Graph (OFG). A consequence 
of the control flow insensitivity is that the construction of the OFG can be 
described with reference to a simplified, abstract version of the Java language. 
All Java instructions that refer to data flows are properly represented in the 
abstract language, while instructions that do not affect the data flows at all are 
safely ignored. Thus, all control flow statements (conditionals, loops, etc.) are 
not part of the simplified language. Moreover, in the abstract language name 
resolution is also simplified. All identifiers are given fully scoped name, being 
preceded by a dot separated list of enclosing packages, classes and methods. 
In this way, no name conflict can ever occur. 

The choice of a data flow sensitive/control flow insensitive program rep­
resentation is motivated by two main reasons: computational complexity and 
the "nature" of the Object Oriented programs. As discussed in Section 2.4, 
the theoretical computational complexity and the practical performances of 
control flow insensitive algorithms are substantially superior to those of the 
control flow sensitive counterparts. Moreover, the Object Oriented code is 
typically structured so as to impose more constraints on the data flows than 
on the control flows. For example, the sequence of method invocations may 
change when moving from an application which uses a class to another one, 
while the possible ways to copy and propagate object references remains more 
stable. Thus, for Object Oriented code, where the actual method invocation 
sequence is unknown, it makes sense to adopt control flow insensitive/data 
flow sensitive analysis algorithms, which preserve the way object references 
are handled. 

Fig. 2.1 shows the abstract syntax of the simplified Java language. A Java 
program P consists of zero or more occurrences of declarations (D), followed 
by zero or more statements (5). The actual ordering of the declarations and of 
the statements is irrelevant, due to the control flow insensitivity. The nesting 
structure of packages, classes and methods is completely flattened. For exam­
ple, statements belonging to different methods are not divided into separate 
groups. However, the full scope is explicitly retained in the names (see below). 
Consequently, a flne grain identiflcation of the data elements is possible, while 
this is not the case for the control elements (control flow insensitivity). 

Transformation of a given Java program into its abstract language repre­
sentation is an easy task, that can be fully automated. Program transforma­
tion tools can be employed to achieve this aim. 

2.1.1 Declarations 

Declarations are of three types: attribute declarations (production (2)), meth­
od declarations (production (3)) and constructor declarations (4). An at­
tribute declaration consists just of the fully scoped name a of the attribute, 
that is, a dot-separated list of packages, followed by a dot-separated list of 
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(1) P ?i= D'S' 
(2) D ::= a 
(3) 1 m(/ i , . . . , 
(4) 1 cs{f„..., 
(5) 5 ::= X = new 
(6) 1 x = 2/; 

fk) 
fk) 
c(ai,...,ajfc); 

(7) 1 [x =]y.m{ai,...,ak); 

Legend: 
Metasymbols: * (repetition), (alternative), [ ] (optional part). 
Non terminals: upper case letters 
Fully scoped identifiers: lower case letters 
Terminals: all the other symbols 

Class scoped identifiers: 
a: class attribute name 
m: method name 
fi,"-,fk' formal parameters 
x,y: program locations 
ai,...,ajfc: actual parameters 
cs: class constructor 
c: class name 

where: 
<attr>: attribute 
<meth>: method 
<param>: parameter 
<constr>: class constructor 
<class>: class name 
<locvar>: local variable 

<attr> 
<meth> 
<param> 
<progloc> 
<progloc> 
< constr> 
< class> 

[<ppref>] 
[<ppref>] 
[<ppref>] 
[<ppref>] 

<cpref> <vid> 
<cpref> <mid> 
<cpref> <mid> . <vid> 
<cpref> <cid> (. <cid>)* 

[<ppref>] <cid> (. <cid>)* 
[<ppref>] 

<progloc>: program location <locvar> 
<ppref>: package prefix 
<cpref>: class prefix 
<pid>: package identifier 
<cid>: class identifier 
<mid>: method identifier 
<vid>: variable identifier 

<pid> (. 
<cid> (. 

<cpref> <mid> . <vid> 
<attr> 1 <param> 

<pid>)* . 
<cid>)* . 

Fig. 2.1. Abstract syntax of the simplified Java language. 

classes, followed by the attribute identifier. A method declaration consists 
of the fully scoped method name m (constructed similarly to the class at­

tribute name a), followed by the list of formal parameters / i , . . . , /fc. In turn, 
each formal parameter fi has m (the fully scoped method name) as prefix, 

and the parameter identifier as dot-separated suffix. Constructors have an ab­
stract syntax similar to that of methods, with class names {<cid>) instead of 
method names {<mid>). Declarations do not include type information, since 

this is not required for OFG construction. 
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^ eLib example . 

Let us consider the class Library of the eLib program (see Appendix A). 
The abstraction of its attribute loans, of type Co l l ec t ion (line 6), consists 
just of the fully scoped attribute name: 

L ib ra ry , loans <attr> 

The declaration of its method borrowDocument (line 56) is abstracted into: 

Library.borrowDocument(Library.borrowDocument.user, 

Library.borrowDocument.doc) <method> 

The declaration of its implicit constructor (with no argument) is abstracted 
into: 

L ib ra ry . L i b r a r y O <constr> 

2.1.2 S t a t e m e n t s 

Statements are of three types (see Fig. 2.1): allocation statements (produc­
tion (5)), assignment statements (production (6)) and method invocations 
(production (7)). The left hand side x of all statements (optional for method 
invocations) is a program location. The right hand side y of assignment state­
ments, as well as the target y of method invocations, is also a program location. 
Program locations {<progloc>) are either local variables, class attributes or 
method parameters. The former have a structure identical to that of formal 
parameters: dot-separated package/class prefix, followed by a method identi­
fier, followed by variable identifier. Chains of attribute accesses are replaced by 
the last field only, fully scoped (e.g., a . b . c becomes B. c, assuming b of class B 
and class B containing field c). The actual parameters ai , . . . , a/c in allocations 
and method invocations are also program locations {<progloc>). The vari­
able identifier {<vid>) that terminates a program location admits two special 
values: t h i s , to represent the pointer to the current object, and re tu rn , to 
represent the return value of a method. Program locations (including formal 
and actual parameters) of non object type (e.g., i n t variables) are omitted 
in the chosen program representation, in that they are not associated to any 
object flow. Class names in allocation statements (production (5)) consist of 
a dot-separated list of packages followed by a dot-separated list of classes. 
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-eLib example 

The body of the second if statement of method borrowDocument (class 
Library of the eLib program, lines 60-62) is represented as the following 
abstract lines of code: 

Library.borrowDocument.loan = 
new Loan(Library.borrowDocument.user, 

Library.borrowDocument.doc); 

Library.borrowDocument . this . 
Library.addLoan(Library.borrowDocument. loan); 

Conditional and return statements have been skipped, and only alloca­
tions, assignments and invocations have been maintained (actually, one allo­
cation, one invocation, and no assignment). Variable names are expanded to 
fully scoped names (no packages are used in this application). In the method 
call (second line above), the method name is prefixed by the class name. The 
impUcit target object ( th i s ) is made explicit, and prefixed according to the 
rules for the program locations. 

Return values are represented by an explicit location, which we call r e t u r n 
and which is prefixed by the fully scoped method name. Thus, the values 
returned by getUser (line 42) and getDocument (line 43) inside method 
addLoan of class Library and assigned respectively to the local variables 
user and doc are abstractly represented as: 

Library .addLoan.user = Loan .ge tUse r . r e tu rn ; 
Library.addLoan.doc = Loan.getDocument.return; 

Unique names are assumed for all program entities. This is the reason 
why in the abstract grammar, package, class, method, and variable identifiers 
{<pid>, <cid>, <mid>, <vid>) are indicated instead of their names. Given 
the source of a Java program, it is always possible to transform it so as to 
make its names unique [30]. Names of overloaded methods belonging to the 
same class can be augmented with an incremented integer suffix, to make 
them unique. The same can be done for methods of different classes with the 
same name. Calling statements are transformed correspondingly. The called 
method(s) can be resolved with all statically type-compatible possibilities. 

2.2 Object Flow Graph 

The Object Flow Graph (OFG) is a pair {N, E), comprising of a set of nodes 
N and a set of edges E. A node is added to the OFG for each program location 



26 2 The Object Flow Graph 

(i.e., local variable, attribute or formal parameter, according to the definition 
in Fig. 2.1). 

eLib example 

The OFG for the class Library of the eLib program contains, for example, 
a node associated with the class attribute loans (line 6), labeled: 

L ib ra ry . l oans 

Two nodes are associated with the formal parameters of method borrow-
Document (line 56): 

Library.borrowDocument.user 
Library.borrowDocument.doc 

The local variable loan (line 60) is associated with node: 

Library.borrowDocument.loan 

The current object inside method borrowDocument is also associated with an 
OFG node: 

Library.borrowDocument.this 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

P 
D 

S 

::= D'S' 
::= a 
1 m{fi,-,fk) 
1 cs{fu..;h) 

::= X = new c ( a i , . 

1 x = y, 
1 [x =] t / .m(a i , . 

..,aifc); 

•,aife); 

{} 
{} 
{} 
{} 
{(ai,/i) e E,...,{akJk) e E,{cs.this,x) € E} 
{iy,x)eE} 
{iy,m.this) € E,{auh) e E,...,{akjk) e E, 
{m.return, x) e E] 

Fig. 2.2. OFG edges induced by each abstract Java statement. 

Edges are added to the OFG according to the rules specified in Fig. 2.2 
(right). They represent the data flows occurring in the analyzed program. The 
set of OFG edges E contains all and only the pairs that result from at least 
one rule in Fig. 2.2. 

When a constructor or a method are invoked (statements (5) and (7), 
resp.), edges are built which connect each actual parameter ai to the respective 
formal parameter / j . In case of constructor invocation, the newly created 
object, referenced by cs.this (with cs the constructor called by new c(...)), 
is paired with the left hand side x of the related assignment (see statement 
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(5)). In case of method invocation, the target object y becomes m.this inside 
the called method, generating the edge {y, m.this), and the value returned by 
method m (if any) flows to the left hand side x (pair (m.return.x)). 

eLih example 

The following invocations, taken from class Library (lines 60, 61): 

Library.borrowDocument.loan = 
new Loan(Library.borrowDocument.user, 

Library.borrowDocument.doc); 

Library.borrowDocument . th is . 
Library.addLoan(Library.borrowDocument, loan); 

generate the following OFG edges: 

(Library.borrowDocument.user, Loan.Loan.usr) 
(Library.borrowDocument.doc, Loan.Loan.doc) 
(Loan .Loan . th i s , Library.borrowDocument.loan) 
(Library.borrowDocument . this , L ib ra ry . addLoan . th i s ) 
(Library.borrowDocument. loan, Library .addLoan. loan) 

Plain assignments (statement (6) in Fig. 2.2) generate an edge that con­
nects the right hand side to the left hand side. Thus, the following abstract 
statements, taken from the constructor of class Loan (lines 137-138): 

Loan.user = Loan.Loan.usr; 
Loan.document = Loan.Loan.doc; 

generate the following edges: 

(Loan.Loan.usr, Loan.user) 
(Loan.Loan.doc, Loan.document) 

2.3 Containers 

Edges in the OFG account for all data flows occurring in a program. While 
some of them are associated with specific Java instructions, such as the as­
signment or the method call, others may be related to the usage of library 
classes. Each time a library class introduces a data flow from a variable x to 
a variable y, an edge (x, y) must be included in the OFG. 

A category of library classes that introduces additional, external data flows 
is represented by containers. In Java, an example is any class implementing 
the interface Col lec t ion , such as the classes Vector, LinkedList , HashSet, 
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and TreeSet. Another example is the interface Map, implemented by classes 
Hashtable, HashMap, and TreeMap. 

Classes implementing the Co l l ec t i on interface provide public methods 
to insert objects into a container and to extract objects from it. One such 
insertion method is add, while extraction can be achieved by requesting an 
I t e r a t o r object, that is successively used to sequentially access all objects in 
the container (method next in interface I t e r a t o r ) . 

Classes implementing the Map interface offer similar facilities, with the 
difference that contained objects are accessed by key. Thus, method put can 
be used to insert an object and associate it to a given key, while method get 
can be used to retrieve the object associated to a given key. 

Abstractly, container objects provide two basic operations that alter the 
data flows in a program: insert, to add an object to a container, and extract, 
to access an object previously inserted into a container. Thus, for a program 
with containers, the two basic cases that have to be handled in OFG construc­
tion are the following: 

(1) c.insert(x); 
(2) X — c. extract(); 

where c is a container and x is an object. In the first case there is a data flow 
from the object x to the container c, while in the second case the data flow is 
reversed. Correspondingly, the following edges are introduced in the OFG: 

(1) cAnsert(x); (x,c) G E 
(2) X — c.extract(); (c, x) G E 

The same edges would be introduced in the OFG in presence of the fol­
lowing assignments: 

(1) c = x; 
(2) X = c; 

For this reason, in the abstract program representation we have adopted, 
insertion and extraction methods associated with container objects are ac­
counted for by transforming the related statements into assignment state­
ments, such as those given above. 

eLib example 

Examples of containers used in the eLih program are the attributes 
documents, u se r s , and loans of the class Library (lines 4, 5, 6). The at­
tribute loans, of type Col lec t ion , is initialized with a LinkedList object. 
Its method addLoan contains the following statement (line 44) : 

l o a n s . a d d ( l o a n ) ; 
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where loan is the formal parameter of the method. Its abstract syntax repre­
sentation is therefore: 

L ib r a ry . l oans = Library .addLoan. loan; 

The invocation of the insertion method add on the container loans is trans­
formed into an assignment that captures the data flow from the inserted object 
(loan) to the container. 

An example of extraction from a container is available from the same class, 
method pr in tAl lLoans (lines 120-122), where the following loop is used to 
access the Loan objects previously inserted into the loans container: 

I t e r a t o r i = l o a n s . i t e r a t o r ( ) ; 
while ( i . h a s N e x t O ) { 

Loan loan = ( L o a n ) i . n e x t ( ) ; 
} 

The related abstract representation, which preserves the data flows be­
tween container and contained objects is: 

L i b r a r y . p r i n t A l l L o a n s . i = L i b r a r y . l o a n s ; 
L i b r a r y . p r i n t A l l L o a n s . l o a n = L i b r a r y . p r i n t A l l L o a n s . i ; 

The first assignment accounts for the data flow from the container (loans) 
to the iterator ( i ) . The second assignment accounts for the access to a con­
tained object by means of the iterator (invocation of method next) , and the 
assignment of this object to the local variable loan. 

Another example available from the Library class is the attribute u se r s , 
of type Map, initialized by a HashMap. Methods addUser (line 8) and getUser 
(line 21) contain respectively insertion and extraction instructions. Specif­
ically, a User object is inserted into the container u se r s by means of the 
following statement, taken from method addUser (line 10): 

use rs .pu t (new I n t e g e r ( u s e r . g e t C o d e ( ) ) , u s e r ) ; 

which is transformed into the following abstract statement: 

L i b r a r y . u s e r s = L ib ra ry .addUser .use r ; 

Symmetrically, the following extraction statement, taken from method 
getUser (line 22): 

r e t u r n (User)users .ge t (new In t ege r (use rCode) ) ; 

is transformed into: 

Library.getUser.return = Library.users; 
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In OFG construction, this is interpreted as the existence of a data flow 
from the container u se r s to the value returned by the method getUser. 

Other examples of external data flows possibly aff'ecting the nodes and 
the edges in the OFG are associated with the usage of dynamic loading (e.g., 
through Java reflection) and with the access to modules written in other 
programming languages (e.g., through the Java native interface, JNI). In these 
cases, a semi-automated analysis of the data flows can still be conducted, 
provided that the external flows are (manually) modeled in a similar way as 
done above for the containers. The involvement of the user is required in the 
specification of the code fragments where such flows take place and of the 
program locations affected by them. Other language features not addressed 
explicitly in this section, such as exception handling and multi-threading, 
require minor extensions (e.g., identifying the throw-catch chains [76]) that 
can be fully automated. 

2.4 Flow Propagation Algorithm 

The OFG represents all data flows involving objects. It is thus possible to 
exploit it to analyze the program's behavior, by propagating proper informa­
tion according to the same flows along which objects are possibly propagated. 
In the next chapters some examples of the kind of information to be propa­
gated will be given. The type to which an object is cast is one such example. 
The allocation of an object at a given program point is another one. How­
ever, in general it can be assumed that some interesting piece of information, 
taken from a set V, is propagated along the OFG. Correspondingly, a flow 
propagation algorithm can be given, independent of the specific elements in 
V. 

Fig. 2.3 shows the pseudocode of the generic flow propagation algorithm. 
It is a specific instance of the flow analysis framework described in [2], ap­
plied to the OFG instead of the control flow graph. Each node n of the OFG 
stores the incoming and outgoing flow information respectively inside the sets 
in[n] and out[n], which are initially empty. Moreover, each node n generates 
the set of flow information items contained in the gen[n] set, and prevents 
the elements in the killfn] set from being further propagated after node n. 
Incoming flow information is obtained from the predecessors of node n as the 
union of the respective out sets (forward propagation). For some analyses, it 
may be appropriate to propagate flow information following the OFG edges 
in reverse order (backward propagation). This is obtained by collecting the 
incoming information from the out sets of the successors. In other words, the 
pseudo-statement 7 becomes: 
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fl 
2 
3 
4 
5 
6 
7 

8 
9 
10 

for each node n e OFG 
in[n] = 0 
out[n] = gen[n] U (in[n] \ kill[n]) 

end for 
while any in[n] or out[n] changes 

for each node n e OFG 
in[n] - Upepredin) ^^^bl 
out[n] = gen[n] U (in[n] \ kill[n]) 

end for 
end while 

where pred(n) is the set of predecessors of node n. 

Fig. 2.3. Pseudocode of the flow propagation algorithm {forward propagation). 

7' in[n] = [Jpesuccin) out[p] 

in case of backward propagation. Incoming flow information {in[nj) is trans­
formed into outgoing information out[n] by removing the elements in the set 
kill[n] and adding those in gen[n]. Flow information is repeatedly propagated 
inside the OFG until the fixpoint is reached: no incoming and no outgoing 
information changes, in any OFG node. 

Assuming an upper bound for the flow information propagated in the 
OFG, the algorithm in Fig. 2.3 is ensured to converge in polynomial time. The 
actual performance can be greatly improved by choosing a proper ordering of 
the nodes in the OFG. In absence of loops, the best ordering is the partial 
order induced by the graph edges. When loops are present, a good strategy 
consists of propagating the flow information inside the loop before considering 
the nodes following the loop. 

The solution produced by the algorithm in Fig. 2.3 has the property of be­
ing valid for all program executions that give rise to the data flows represented 
in the OFG. Since the OFG has been defined in order to take into account 
all statically possible data flows, the resulting solution is conservative (safe), 
in that no data flow can ever occur at run time which is not represented by 
a path in the OFG. However, in general it is impossible to decide statically if 
a path is feasible or not (i.e., if it can actually be executed for some input). 
Thus, the solution produced by the algorithm might be over-conservative, in 
that it may permit flow propagation along infeasible paths. Consequently, if 
a flow information is present at a node, there may be an execution of the 
program that actually produces it, while if it is absent, it is ensured that no 
execution can ever produce it. 
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2.5 Object sensitivity 

According to the abstract syntax in Fig. 2.1, class attributes, method names, 
program locations, etc., are scoped at the class level. This means that it is 
possible to distinguish two locations (e.g., two class attributes) when they 
belong to different classes, while this cannot be done when they belong to the 
same class but to different class instances (objects). In other words, the OFG 
constructed according to the rules given in Section 2.2 is object insensitive. 
While this may be satisfactory for some analyses, in some cases the ability 
to distinguish among locations that belong to different objects might improve 
the analysis results substantially. 

An object sensitive OFG can be built by giving all non-static program 
names an object scope instead of a class scope ( s t a t i c attributes and pro­
gram locations that belong to s t a t i c methods maintain the class scope). 
Objects can be identified statically by their allocation points, thus, in an ob­
ject sensitive OFG, non-static class attributes and methods (including their 
parameters and local variables) are replicated for every statically identified 
object. Syntactically, an object allocation point in the code is determined by 
statements of the kind (5) in Fig. 2.1. For each such allocation point, an ob­
ject identifier is created, and all attributes and methods in the class of the 
allocated object are replicated for it. Replicated program locations become 
distinct nodes in the OFG. 

Construction of the OFG edges becomes more complicated when locations 
are object sensitive. For example, in presence of method calls, sources and 
targets of OFG edges can be determined only if the current object (pointed to 
by t h i s ) and the objects pointed by the reference variable used as invocation 
target are known. Chapter 4 provides the details of an algorithm to infer such 
an information. 

eLib example 

Let us consider two statements, one from the method getUser (line 141) 
and the other from getDocument (line 144) of class Loan. Their abstract syn­
tax, with class scoped names, is: 

Loan .ge tUse r . r e tu rn = Loan.user ; 
Loan.getDocument.return = Loan.document; 

Assuming that two Loan objects are created in the program, their identi­
fiers being Loanl and Loan2, the two statements, with object scoped names, 
become: 

L o a n l . g e t U s e r . r e t u r n = Loan l .use r ; 
Loan2 .ge tUser . re tu rn = Loan2.user; 
Loanl .getDocument . re turn = Loanl.document; 
Loan2.getDocument.return = Loan2.document; 
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The effect of object sensitivity on the accuracy of the OFG consists of 
a finer grain edge construction, resulting in a more precise propagation of 
information along the data flows. In fact, information is not mixed when 
propagated along different objects, in an object sensitive OFG. Let us consider 
the following code fragment, inside a hypothetical method main of class Main: 

User ul = new User ("J . Smith", "" , " " ) ; 
Document d l = new DocumentC'The S t o r y " ) ; 
Loan 11 = new Loan(ul , d l ) ; 
Document d2 = new Document("Mother"); 
Loan 12 = new Loan(ul, d2); 
Document doc = l l .ge tDocumentO ; 

in addition to the body of Loan.Loan (line 136) and Loan.getDocument 
(line 143) represented as: 

Loan.user = Loan.Loan.usr; 
Loan.document = Loan.Loan.doc; 
Loan.getDocument.return = Loan.document; 

Five objects are allocated in total inside the code fragment above. We will 
identify them as User l , Document 1, Loanl, Document2, Loan2 respectively. 

Fig. 2.4. Object insensitive OFG. 

Figures 2.4 and 2.5 contrast object insensitive and object sensitive OFGs 
for the code given above. Object flows in Fig. 2.5 capture the data flows 
occurring in the code fragment more accurately than those in Fig. 2.4. For 
example, the two variables d l and d2 are assigned a Document object created 
at two distinct allocation points. While in the OFG of Fig. 2.4 incoming 
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edges come from a same node (Document.Document. t h i s ) , in Fig 2.5 the edge 
for the first object comes from node Documentl.Document.this and ends at 
Main. main, d l , while the second edge goes from Document2. Document . t h i s 
to Main.main.d2. In this way, the data flows related to these two objects are 
kept separated. 

Similarly, the two Loan objects assigned to 11 and 12 belong to two diflFer-
ent flows in Fig. 2.5 (bottom), while they share the same flow in Fig. 2.4. In the 
object sensitive OFG (Fig. 2.5), Main.main.dl flows into Loanl.Loan.doc, 
due to parameter passing, while Main.main.d2 flows into Loan2.Loan.doc. 
These two flows are mixed in Fig. 2.4. When getDocument is called on ob­
ject 11, a single location (Loan.getDocument . r e tu rn ) stores the return value 
in Fig. 2.4, combining both flows from Main.main.dl and Main.main.d2. 
On the contrary, two return locations are represented in Fig. 2.5, namely 
Loanl. getDocument. r e t u r n and Loan2. getDocument. r e tu rn . Since the call 
is issued on 11, and this variable can reference Loanl only, an OFG edge is 
created from Loanl. getDocument . r e t u r n to Main.main.doc, but not from 
Loan2.getDocument.return. 

The potential advantages of an object sensitive OFG construction are ap­
parent from the example above. In practice, the actual benefits depend on the 
purposes for which the successive analysis is conducted. 

The main difficulty in object sensitive OFG construction is the static es­
timation of the objects referenced by variables. This information is neces­
sary whenever an attribute or a method are accessed/invoked through a ref­
erence variable. In fact, the related edges connect locations scoped by the 
pointed objects. In the example above, Loanl .getDocument . r e t u r n (but not 
Locai2. getDocument. r e tu rn ) is connected to Main. main. doc, because 11 ref­
erences Loanl (but not Loan2). 

In order to construct an object sensitive OFG, the information about the 
objects possibly referenced by program variables can be obtained by defining 
a flow propagation on the OFG aiming at statically estimating the referenced 
objects. This is the topic of Chapter 4. However, the algorithm used for this 
purpose assumes the availability of the OFG itself. Thus, we have a mutual 
dependence. It can be solved by constructing the OFG edges incrementally. 
On the contrary, all OFG nodes can be constructed from the very beginning. 

Initially, all allocations points are associated to object identifiers, used to 
scope the names of non-static program locations. This produces the set of all 
OFG nodes. As regards edges, only internal edges can be built at this stage, 
that is, edges involving constructor/method parameters or local variables, that 
are rephcated for every object scope (boxes in Fig. 2.5). 

Invocation of methods and access to class attributes require knowledge 
about the objects referenced by variables and by the special location t h i s . 
Such information is approximated by a first round of flow propagation. At the 
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Fig. 2.5. Object sensitive OFG. Dashed (resp. solid) boxes indicate a method body 
repHcated for each allocated object. 

end of the propagation, edges can be added to the OFG for method calls and 
attribute accesses, using the objects pointed to by the related variables, as 
determined by the flow propagation. On the new version of the OFG obtained 
in this way, including the edges produced by the result of the previous flow 
propagation, a better estimate of the objects pointed by variables can be 
obtained. Refinement of the OFG can continue, until a stable one is produced 
(it should be noted that the incremental construction is monotone, in that 
edges are possibly added, but never removed). 

Complete construction of an object sensitive OFG is possible only if the 
whole program is available (including the main), since all allocation points 
of all involved objects must be part of the code under analysis. In Object-
Oriented programming this may not be the case, since incomplete systems 
are often produced and classes are often reused in different contexts. In these 
situations, an object insensitive OFG construction may be more appropriate. 
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2.6 The eLib Program 

Let us consider the object insensitive (with no main available) construction 
of the OFG for the eLib program given in Appendix A. The first step consists 
of transforming the original program, written according to the Java syntax, 
into a program that respects the abstract syntax provided in Fig. 2.1. During 
the transformation, containers are taken into account by converting insertion 
and extraction instructions into assignments. 

method Library.borrowDocument 

56 public boolesm borrowDocument(User user, Document doc) 
57 if (user == null I I doc == null) return fa l se ; 
58 if (user.numberOfLoans0 < MAX_NUMBER_OF_LOANS && 
59 doc . i sAvai lable0 &ft doc.authorizedLoan(user)) { 
60 Loan loein = new Loan(user, doc); 
61 addLoamdosm); 
62 return true; 
63 } 
64 return fa l se ; 
65 } 

Library.borrowDocument(Librao'y.borrowDocument.user, 
Library.borrowDocument.doc) 

Library.borrowDocument.user.numberOfLoans(); 
Library.borrowDocument.doc.isAvailable(); 
LibrsLry.borrowDocument.doc.authorizedLoan(Library.borrowDocument.user); 
Library.borrowDocument.loan = new Lo2ui(Library.borrowDocument.user, 

Library.borrowDocument.doc); 
Library.borrowDocument.this.addLoan(Library.borrowDocument.loan); 

Fig. 2.6. Concrete (top) and abstract (bottom) syntax of method borrowDocument 
from class Library. 

Fig. 2.6 shows the translation of method borrowDocument from class 
Library (line 56) into its abstract representation. An abstract declaration of 
the method is generated first. The method name is prefixed by the class name, 
and all parameter names are fully scoped, being prefixed by class and method 
name. Then, abstract statements are generated only for statements that in­
volve object flows. Thus, the first conditional statement is skipped. From the 
second conditional statement, only the method invocations contained in the 
condition need be transformed. Correspondingly, the abstract representation 
contains the invocation of numberOf Loans (class User), i sAvai lab le (class 
Document), and authorizedLoan (class Document). Targets of these invoca­
tions are parameters of borrowDocument. They are abstracted into their fully 



2.6 The eLib Program 37 

-method Library. addLoan 

40 private void addLoan(Loan loan) { 

41 if (loam == null) return; 

42 User user = loan.getUserO; 

43 Document doc = loan.getDocument(); 

44 loans.add(loan); 

45 user.addLoan(loan); 

46 doc.addLoan(loan); 

47 } 

Library.addLoan(Library.addLoan.loan) 

Libraury.addLoan.user = Library.addLoan.losui.getUserO ; 

Library.addLoan.doc = Library.addLoam.loan.getDocument(); 

Library.loans = Library.addLoam.loam; 

Libraury.addLoan.user.addLoan(Library.addLoan.loan); 

Library.addLoan.doc.addLoaoi (Library.addLoan.loan); 

method User. addLoan 

314 public void addLo2in(Loan loan) { 

315 loans.add(loan); 

316 > 

User.addLoan(User.addLoan.loan) 

User, loans = User. addLoaui. loam; 

method Document. addLoan. 

202 public void addLoan(Loan In) { 

203 loan = In; 

204 } 

Document. addLoein (Document. addLoan. In) 
Document.loan = Document.addLoan.In; 

F ig . 2 .7 . Concrete and abstract syntax of methods addLoan from classes Library , 

User and Dociiment. 

scoped names. The same holds for the actual parameter of authorizedLoan 

(see Fig. 2.6). 

The next statement that is abstracted is the allocation of a Loan ob­

ject (line 60). The local variable to which the allocated object is assigned is 

fully scoped, similarly to the method parameters. Finally, the call to method 

addLoan (line 61) from the same class (Library) is given an abstract repre­

sentation in which the target of the call is the special location t h i s , indicating 

explicitly that the method is called on the current object. 

Other abstractions for the eLib program are reported in Fig. 2.7. Note that 

the same method name addLoan has been left in more than one class, instead of 
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introducing method identifiers (such as addLoaml, addLoan2, addLoanS), just 
to improve the readabiUty. However, method calls are assumed to be uniquely 
solved when OFG edges are constructed (e.g., the statement at line 45 inside 
L ib ra ry . addLoan is a call to User. addLoan, while the statement at line 46 
is a call to Document. addLoan). 

Methods getUser and getDocument, invoked inside addLoan in class 
Library (lines 42, 43), have a return value, which is assigned to a left hand 
side variable. Correspondingly, their abstract representations are assignments 
with the invocation in the right hand side and the fully scoped variable as 
left hand side (see Fig. 2.7). The method add is called at hue 44 on the class 
attribute loans, a Co l l ec t i on type object. Since this is an insertion method, 
the related abstract representation is an assignment with the parameter of 
the call (loan) on the right hand side, and the container (loans) on the left 
hand side. It should be noted that the fully scoped name of the class attribute 
loans consists of class name and attribute name only. The last two calls inside 
L ib ra ry . addLoan are similar to the first two ones, without any return value. 

The body of method addLoan from class User is transformed (see Fig. 2.7) 
into an assignment, associated with a container insertion, where the container 
is the attribute loans (of type Col lec t ion) of class User. Finally, the body of 
method addLoan from class Document is abstracted into an assignment with 
the fully scoped method's parameter on the right hand side and the class field 
loan on the left hand side. 

Transforming the remainder of the eLib program into its abstract syntax 
representation is quite straightforward, along the lines given above for the 
examples in Fig 2.6 and 2.7. Once the program's abstraction is completed, it 
is possible to construct the OFG by applying the rules in Fig. 2.2. 

Fig. 2.8 shows the OFG nodes and edges that are induced by the abstract 
code in Fig. 2.6 and 2.7. The number labeling each edge refers to the statement 
that generates it. Method calls cause an edge whose target is a t h i s location 
(properly prefixed). For example, the first two statements (following the dec­
laration) in the abstract code of Fig. 2.6 (method calls: numberOf Loans () 
and i s A v a i l a b l e O at lines 58 and 59) generate respectively the edges 
(Library.borrowDocument.user, User.numberOfLoans.this) and (Libra­
ry .borrowDocument.doc, Document . i sAva i l ab le . th i s ) , labeled 58 and 59. 
Parameter passing induces edges that end at formal parameter locations. For 
example, the third abstract statement in Fig. 2.6 (associated with line 59) is a 
call to the method authorizedLoain with actual parameter Library . borrowDo­
cument. user and formal parameter Document .author izedLoan.user . Cor­
respondingly, in Fig. 2.8 the topmost edge labeled 59 connects these two lo­
cations. 

Allocation statements, such as the fourth abstract statement in Fig. 2.6 
(line 60), induce edges between actual and formal parameters, similarly to 
method calls. In addition, they induce an edge between the constructor's t h i s 
location and the left hand side location. In our example, Loan.Loan. this 
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Library .borrowDocument.thlr) Qx)an.getUser.return^ (Xoan.getDocument 

M!.ibrary.addLoan.this^ 

Fig . 2 .8 . OFG associated with the abstract code in Fig. 2.6 (method 
borrowDocument in class Library) and 2.7 (method addLoan in classes Library , 
User, Document). 
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and the allocation's left hand side variable, Library.borrowDocument.loan 
(Fig. 2.8 center, edge labeled 60). 

An example of a method call with a return value is provided by the first 
abstract statement (after the declaration) of method L ibra ry . addLoan (see 
Fig. 2.7 top, line 42). The left hand side location (Library.addLoan.user) 
is the target of an edge outgoing from Loan .ge tUser . re tu rn , the location 
associated with the value returned by the method call (see Fig. 2.8 bottom, 
edge labeled 42). 

Container operations are also responsible for some edges in the OFG of 
Fig. 2.8. For example, the body of User.addLoan contains just an insertion 
statement (line 315). The container User . loans , into which a Loan object 
is inserted, becomes the target of an edge starting at the inserted object 
location, User. addLoan. loan (Fig. 2.8 center, edge labeled 44). This indicates 
an object flow from the parameter loan of method addLoan into the container 
User . loans . 

The OFG constructed for the code in Fig. 2.6 and 2.7 shows the data 
flows through which objects are propagated from location to location. Thus, 
the parameter use r of method borrowDocument becomes the current object 
( t h i s ) inside number Of Loans, while it is the parameter user inside method 
authorizedLoan and it is the parameter us r inside the constructor of class 
Loan, as depicted at the top of Fig 2.8. Similarly, the other parameter of 
borrowDocument, doc, flows into i sAva i l ab le and authorizedLoan as t h i s , 
and into the constructor of class Loan as the parameter doc. The object of class 
Document returned by Loan.getDocument (bottom-right of Fig. 2.8) flows into 
the local variable doc of L ibra ry . addLosin, and then becomes the current 
object ( th i s ) inside Document. addLoan. 

2.7 Related Work 

The OFG and the related flow propagation algorithms are based on research 
conducted on pointer analysis [3, 21, 47, 49, 60, 68, 81, 86]. The aim of pointer 
analysis is to obtain a static approximation of any points-to relationship that 
may hold at run-time between pointers and program locations. Similarly, when 
Object-Oriented programs are considered, the relationship between reference 
variables and objects is analyzed. 

Pointer analysis algorithms can be divided into flow/context sensitive [21, 
47, 60] and flow/context insensitive [3, 81]. Flow/context sensitive algorithms 
produce fine grained and accurate results, in that a points-to relationship is 
determined that holds at every program statement. Moreover, different invo­
cation contexts can be distinguished. However, the computational complexity 
involved in these approaches is high, and in practice their performance does 
not scale to large software systems. Flow/context insensitive algorithms have 
lower complexity and scale well. On the other side, they produce results that 
hold for the whole program, and the points-to relationships they derive cannot 
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be distinguished by statement or invocation context. Flow/context sensitive 
analyses are defined with reference to the control flow graph [2] of a program, 
while flow/context insensitive algorithms define the analysis semantics at the 
statement level. 

The algorithm most similar to ours is [3]. Originally described for the C 
language, it has been recently extended to Java [49, 68]. Differently from the 
approach followed in this book, no explicit data structure, such as the OFG, 
is used in [3] as a support for the flow propagation: data flows are represented 
as set-inclusion constraints. 

The improvement of a control flow insensitive pointer analysis obtained 
by introducing object sensitivity was proposed in [57], where the possibility 
of parameterizing the degree of object sensitivity is also discussed. 



Class Diagram 

The class diagram is the most important and most widely used description of 
an Object Oriented system. It shows the static structure of the core classes 
that are used to build a system. The most relevant features (attributes and 
methods) of each class are provided in the class diagram, together with the 
optional indication of some of their properties (visibility, type, etc.). Moreover, 
the class diagram shows the relationships that hold among the classes in a 
system. This gives a static view of the structural connections that have been 
designed to allow communication and interaction among the classes. Thus, the 
class diagram provides a very informative summary of many design decisions 
about the system's organization. 

Recovery of the class diagram from the source code is a difficult task. The 
decision about what elements to show/hide profoundly affects the usability 
of the diagram. Moreover, interclass relationships carry semantic information 
that cannot be inferred just from the analysis of the code, being strongly 
dependent on the domain knowledge and on the design rationale. 

A basic algorithm for the recovery of the class diagram can be obtained 
by a purely syntactic analysis of the source code, provided that a precise defi­
nition of the interclass relationships is given. For example, an association can 
be inferred when a class attribute stores a reference to another class. One 
problem of the basic algorithm for the recovery of the class diagram is that 
declared types are an approximation of the classes actually instantiated in a 
program, due to inheritance and interfaces. An OFG based algorithm can be 
defined to improve the accuracy of the class diagram extracted from the code, 
in presence of subclassing and interface implementation. Another problem of 
the basic algorithm is related to the usage of weakly typed containers. Asso­
ciations determined from the types of the container declarations are in fact 
not meaningful, since they do not specify the type of the contained objects. It 
is possible to recover information about the contained objects by exploiting a 
flow analysis defined on the OFG. 

The basic rules for the reverse engineering of the class diagram are given 
in Section 3.1. Accuracy of the associations in presence of inheritance and in-
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terfaces is discussed in Section 3.2, where an algorithm is provided to improve 
the results of a purely syntactic analysis. The problems related to the usage 
of weakly typed containers and an OFG based algorithm to address them are 
described in Section 3.3. Recovery of the class diagram is conducted on the 
eLib application in Section 3.4. Related works are discussed in the last section 
of this chapter. 

3.1 Class Diagram Recovery 

The elements displayed in a class diagram are the classes in the system under 
analysis. Internal class features, such as attributes and methods, can be also 
displayed. Properties of the displayed features, as, for example, the type of 
attributes, the parameters of methods, their visibility and scope (object vs. 
class scope), can be indicated as well. This information can be directly ob­
tained by analyzing the syntax of the source code. Available tools for Object 
Oriented design typically oflPer a facility for the recovery of class diagrams 
from the code, which include this kind of syntactic information. 

eLib example 

User 

userCode: int 
fullName: String 
address: String 
phoneNumber: String 
loans: Collection 
nextUserCodfiAvailahle: int 

User(name: String, addr: String, phone: String) 
equals(obj: Object): boolean 
authorizedUser(): boolean 
getCode(): int 
getName(): String 
getAddress(): String 
getPhone(): String 
addLoan(loan: Loan) 
numberOfLoans(): int 
removeLoan(loan: Loan) 
printlnfoO 

Fig. 3.1. Information gathered from the code of class User. 

Fig. 3.1 shows the UML representation recovered from the source code of 
class User, belonging to the eLib example (see Appendix A). The first com­
partment below the class name shows the attributes (userCode, fullName, 
etc.). Static attributes (nextUserCodeAvailable) are underlined. Class op-
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erations are in the bottom compartment. The first entry is the constructor, 
while the other methods provide the exported functionalities of this class. 

Relationships among classes are used to indicate either the presence of ab­
straction mechanisms or the possibility of accessing features of another class. 
Generalization and realization relationships are examples of abstraction mech­
anisms commonly used in Object Oriented programming that can be shown 
in a class diagram. Aggregation, association and dependency relationships are 
displayed in a class diagram to indicate that a class has access to resources 
(attributes or operations) from another class. 

A generalization relationship connects two classes when one inherits fea­
tures (attributes and methods) from the other. The subclass can add further 
features and can redefine inherited methods (overriding). A realization rela­
tionship connects a class to an interface if the class implements all methods 
declared in the interface. Users of this class are ensured that the operations 
in the realized interface are actually available. 

Generalization and realization relationships satisfy the substitutability 
principle: in every place in the program where a location of the super­
class/interface type is declared and used, an instance of any sublass/class 
realizing the interface can actually occur. 

Relationships of access kind hold between pairs of classes each time one 
class possesses a way to reference the other. Conceptually, access relationships 
can be categorized by relative strength. A quite strong relationship is the 
aggregation. A class is related to another class by an aggregation relationship 
if the latter is a part-of the former. This means that the existence of an 
object of the first class requires that one or more objects of the other class 
do also exist, in that they are an integral part of the first object. Participants 
in aggregation relationships may have their own independent life, but it is 
not possible to conceive the whole (first class) without adding also the parts 
(second class). An even stronger relationships is the composition. It is a form 
of aggregation in which the parts and the whole have the same lifetime, in 
that the parts, possibly created later, can not survive after the death of the 
whole. 

A weaker relationship among classes than the aggregation is the associa­
tion. Two classes are connected by a (bidirectional) association if there is the 
possibility to navigate from an object instantiating the first class to an object 
instantiating the second class (and vice versa). Unidirectional associations ex­
ist when only one-way navigation is possible. Navigation from an object to 
another one requires that a stable reference exists in the first object toward 
the other one. In this way, the second object can be accessed at any time from 
the first one. 

An even weaker relationship among classes is the dependency. A depen­
dency holds between two classes if any change in one class (the target of 
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the dependency) might affect the dependent class. The typical case is a class 
that uses resources from another class (e.g., invoking one of its methods). Of 
course, aggregation and association are subsumed by dependency. 

3.1.1 Recovery of the inter-class relationships 

From the implementation point of view, there is no substantial difference 
between aggregation and association. Both relationships are typically imple­
mented as a class attribute referencing other objects. Attributes of container 
type are used whenever the multiplicity of the target objects is greater than 
one. In principle, there would be the possibility to approximately distinguish 
between composition and aggregation, by analyzing the life time of the ref­
erenced objects. However, in practice implementations of the two relation 
variants have a large overlap. 

In the implementation, dependencies that are not associations or aggre­
gations can be distinguished from the latter ones because they are accesses 
to features of another class performed through program locations that, dif­
ferently from class attributes, are less stable. For example, a local variable 
or a method parameter may be used to access an object of another class and 
invoke one of its methods. In such cases, the reference to the accessed object is 
not stable, being stored in a temporary variable. Nevertheless, any change in 
the target class potentially affects the user class, thus there is a dependency. 

Relationships 
Association/aggregation 

Dependency 

Generalization 

Realization 

Code 
Class attribute: 

c l a s s A { B b ; } 
Local variable/parameter: 

c l a s s A { void f(B b) { b . g O ; } } 
c l a s s A { void f ( ) {B b ; . . . b . g O ; } } 

c l a s s A extends B { . . . } 

c l a s s A implements B { . . . } 

Table 3.1. Reverse engineering of inter-class relationships. 

Table 3,1 summarizes the inter-class relationships and the rules for their 
recovery. Generalization and realization are easily determined from the class 
declaration, by looking for the keywords extends and implements, respec­
tively. The declared type of the program locations (attributes, local variables, 
method parameters) involved in associations (including aggregations) and de­
pendencies is used to infer the target of such relationships. In the next two 



3.2 Declared vs. actual types 47 

sections we will see that this simple method may potentially give rise to in­
accuracies in the presence of inheritance, interfaces or containers. Improved 
class diagrams can be obtained by refining the declared type into more precise 
information by means of flow propagation in the OFG. 

.eLib example . 

In the eLib example (see Appendix A), class Loan has two association 
relationships with classes User and Document, which can be easily reverse en­
gineered from its code given the presence of two attributes, use r and document 
(hues 134, 135), of the two target classes. Conceptually, they could be regarded 
as aggregations, rather than associations, in that a loan has a user and a bor­
rowed document as its integral constituents. However, from the analysis of the 
source code there is no way to distinguish this case from the plain association. 
In the following, no distinction is made between aggregation and association, 
and the latter will be used as possibly inclusive of the former. 

The class Library performs method invocations on objects of class User 
and Document through parameters (resp. at line 10 inside addUser and 
at line 26 inside addDocument) or local variables (resp. at line 17 inside 
removeUser and at hne 33 inside removeDocument). Thus, there is a depen­
dency between Library and User, and between Library and Document. 

3.2 Declared vs. actual types 

The declared type of attributes, local variables and method parameters is 
used to determine the target class of associations and dependencies. It is 
quite typical that the declared type is the root of a sub-tree in the inheritance 
hierarchy or it is an interface. For example, attributes use r and document 
of class Loan in the eLib program are respectively declared to be of type 
User, which has In t e rna lUse r as a subclass, and Document, which has Book, 
Journal , and TechnicalReport as subclasses. A hypothetical binary search 
tree program may contain a class BinaryTreeNode with an attribute obj to 
store the information to be associated with each tree node. Its declared type 
could be Comparable, i.e., the interface implemented by objects that can be 
totally ordered by means of the method compareTo. 

When the declared type is the root of an inheritance sub-tree, an associa­
tion or dependency is inferred from the given class to the root of the sub-tree. 
In the eLib example, two of the inferred relationships connect Loan to User 
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and Document. If the application program uses only a portion of the inheri­
tance sub-tree, the target of the association/dependency is inaccurate. A more 
precise target class would consist of the classes of the actually allocated ob­
jects. For example, if in a specific instance of the library application only 
documents of type Book are handled, an association should connect Loan to 
Book instead of Document. 

The problem is exacerbated with interfaces. Let us consider the binary 
search tree example sketched above. The presence of an attribute obj of type 
Comparable would generate an association from BinaryTreeNode to Compa­
r a b l e . Since the interface Comparable is not user-defined, such an association 
is typically not included in the class diagram of the system, since only rela­
tionships among user-defined classes are of interest. Let us assume that the 
application program using the binary search tree defines a class Student which 
implements the interface Comparable. Objects of type Student are allocated 
in the program and are assigned to the field obj of BinaryTreeNode objects. In 
the class diagram for this application, one would expect to see an association 
from BinaryTreeNode to Student. If the basic reverse engineering method 
described in Section 3.1 is applied, no such association is actually recovered 
from the code. Thus, usage of an interface as the type of a class field results 
in an inaccurate recovery of the class diagram. 

In general, there might be a mismatch between the type declared for a 
program location and the actual types of the objects that are possibly as­
signed to such a location. In fact, the declared type might be a superclass 
of, or an interface implemented by, the actual object types. In these cases, 
a precise recovery of the class diagram can be achieved only by determining 
the type of the actually allocated objects that are possibly referenced by the 
program locations under analysis. The flow propagation algorithm presented 
in Chapter 2 can be used for this purpose. 

3.2.1 Flow propagation 

Specialization of the generic flow propagation algorithm to refine the declared 
type of variables requires the specification of the sets gen and kill of each OFG 
node. Fixpoint of the fiow information on the OFG is achieved by the generic 
procedure given in Chapter 2. Fig. 3.2 shows how the gen set is determined for 
the OFG nodes. Only nodes of type cs.this have non empty gen set. All other 
OFG nodes have an empty gen set. All kill sets are empty in this analysis 
specialization. 

Given an object allocation such as statement (5) of Fig. 3.2, the fiow 
information that has to be propagated in the OFG is the exact type of the 
allocated object. This is the reason why the class name c is inserted into the 
gen set. The OFG location where the propagation of this flow information 
starts is the t h i s pointer of the constructor. In fact, that is the very first 
location holding a reference to the newly allocated object. Thanks to the OFG 
edges, constructed according to the algorithm described in Chapter 2, this 
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(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

where in 
gen[n] = 
kill[n] = 

P 
D 

S 

( 5 ) C 5 

::= D*5* 
::= a 

1 m{fu...,fk) 
1 cs{fi,...,h) 

::= X = new c(ai, ...,ajk); gen[cs.this] 
1 X = y; 
1 [x =]y.m{ai,...,ak); 

is the invoked constructor for class c. 
0 for all locations different from cs.this 
d for all locations 

= {c} 

Fig. 3.2. Flow propagation specialization to determine the type of actually allocated 
objects referenced by program locations. 

information is propagated to the right hand side x of the allocation statement 
(5), and from this location it can reach other program locations, according to 
the object flows. In the end, the class names that reach class attributes indicate 
the improved targets of association relationships. Similarly, the class names 
associated with local variables or method parameters allow the refinement of 
dependency relationships. 

3.2.2 Visual iza t ion 

Since flow propagation in the OFG according to the specialization in Fig. 3.2 
results in a set of referenced object types for each program location, instead 
of a single type, a postprocessing that simplifies the output might be appro­
priate. Each time the types inferred for a location x, and available from out[x] 
after the fixpont, are coincident with all descendants of a user-defined class 
A, a single relationship can be produced toward class A, which is assumed to 
imply a relationship with all subclauses. In this way, the class diagram is not 
cluttered by relationships toward all subclasses. However, the disadvantage 
of this graphical representation is that it makes it impossible to distinguish 
between a relationship with class A only and a relationship with A and all its 
subclasses. 

In the eLib example, if the result of flow propagation is: out [Loan. use r ] = 
{User, In t e rna lUse r} , it is possible to draw just one association in the class 
diagram, between Loan and User. However, this makes the diagram indistin­
guishable from one produced for a program where no In t e rna lUse r is ever 
allocated. Such an inaccuracy becomes acceptable when the diagram is large 
and drawing relationships toward all subclasses makes it not understandable 
and usable. Otherwise, the diagram with more precise relationships should be 
preferred. 

As a general rule, when several relationships are directed from a class to a 
set of classes, an option to reduce the visual cluttering is replacing them with 
a single relationship toward the Least Common Ancestor (LCA) of the target 
classes. The diagram becomes less precise but easier to read. 
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binary search tree example . 

The importance of applying the flow propagation algorithm to determine 
the targets of associations and dependencies becomes even more evident when 
interfaces are used in the program. Let us consider the binary tree example 
once more. The code fragments relevant to our analysis are the following: 

class BinaryTreeNode { 
BinaryTreeNode l e f t , r ight ; 
Comparable obj; 
public BinaryTreeNode(Comparable x) { 

obj = x; 
} 

} 
class UniversityAdmin { 
static BinaryTree students = new BinaryTreeO ; 

public static addStudent(Student s) { 
BinaryTreeNode n = new Bin2LryTreeNode(s); 

students.insert(n); 
} 
public static void main(String args[]) { 

Student s = new Student("J. Smith"); 
addStudent(s); 

} 

} 

The abstract syntax of the statements above follows: 

BinaryTreeNode.obj = BinaryTreeNode.BinaryTreeNode.x; 
UniversityAdmin.students = new BinaryTreeO; 
UniversityAdmin.addStudent.n = 

new BinaryTreeNode(UniversityAdmin.addStudent.s); 
UniversityAdmin.students.insert(UniversityAdmin.addStudent.n); 
UniversityAdmin.main.s = new StudentO; 
UniversityAdmin.addStudent(UniversityAdmin.main.s); 

The related OFG is shown in Fig. 3.3. The only non empty gen sets of its 
nodes are: 

^ e n [ S t u d e n t . S t u d e n t . t h i s ] = {Student} 
pen[BinaryTreeNode.BinaryTreeNode.this] = {BinaryTreeNode} 
pen[BinaryTree .BinaryTree . th i s ] = {BinaryTree} 
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Fig. 3.3. OFG for the binary search tree example. 

After flow propagation, the following out set is determined for the attribute 
obj of class BinaryTreeNode: 

ow^[BinaryTreeNode.obj] = {Student} 

Thus, an association can be drawn in the class diagram from BinaryTreeNode 
to Student. On the contrary, the analysis of the declared type would miss com­
pletely this interclass relationship, because the declared type of BinaryTreeNo­
de. obj is Comparable. 

As apparent from the example above, the declared types of variables are a 
good starting point to infer the relationships that hold among the user-defined 
classes represented in a class diagram. However, they may lead to imprecise 
diagrams, where some of the existing relationships are absent. One of the main 
reasons for the inaccuracy is the declaration of program locations whose type 
is an interface. In this case, the declared type is not very informative. An 
OFG based analysis of the actual object types can be used to obtain a more 
accurate class diagram. 

3.3 Containers 

Containers are classes that implement a data structure to store, manage, and 
access other objects. Classical examples of such data structures are: list, tree, 
graph, vector, hash table, etc. Weakly typed containers are containers that 
collect objects the type of which is not declared. With the current version of 
Java, that does not yet support genericity, all containers are weakly typed. 
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Thus, an object x of type L i s t that is used to store objects from class A is 
declared as: "L i s t x; ", without any explicit mention of the contained object 
type, A. Knowledge about the kind of objects that can be inserted into x and 
that are retrieved from x is not part of the program's syntax. 

Weakly typed containers expose programmers to errors that are not de­
tected at compile time, and are typically due to a wrong type assumed for 
contained objects. Moreover, they make reverse engineering a difficult task. In 
fact, interclass relationships, such as associations and dependencies, are deter­
mined from the type declared for attributes, local variables and parameters. 
When containers are involved, the relationships to recover should connect the 
given class to the classes of the contained objects. However, information about 
the contained object classes is not directly available in the program. 

eLib example 

Let us consider the eLib example. Class Library has an attribute loans 
(line 6) of declared type Col lec t ion , and two attributes, u se r s and docu­
ments (lines 4, 5), of type Map. Since both Co l l ec t ion and Map are inter­
faces, the algorithm described in Section 3.2 can be applied to determine a 
more accurate type for these class attributes. The result does not help re­
verse engineer the associations implemented through these attributes. In fact, 
the classes that implement the Co l l ec t i on and Map interfaces and are actu­
ally used for the corresponding attributes of class Library are respectively 
LinkedList and HashMap, that is, two weakly typed containers. Since HashMap 
and LinkedList are hbrary classes, no relationship is drawn in the class di­
agram for them (only user defined classes are considered). However, a closer 
inspection of the source code reveals that the attribute documents holds the 
mapping between a document code and the corresponding Document object. 
Similarly, the attribute use r s associates a user code to the related User ob­
ject. The attribute loans stores the list of all active loans of the library, 
represented as objects of the class Loan. Thus, three association relationships 
are missed when only declared types are considered, one between Library and 
Document, another one between Library and User, and a third one between 
Library and Loan. Correspondingly, the reverse engineered class diagram is 
very poor and does not show important information such as the way to ac­
cess the Document objects managed by the Library, the library users (User 
objects), and the loans (missing association with class Loan). 

3.3.1 Flow propagation 

It is possible to define a specialization of the flow propagation algorithm pre­
sented in Chapter 2, aimed at estimating the type of the contained objects for 
weakly typed containers. The basic idea is that before insertion into a con­
tainer each object has to be allocated, and allocation requires the full speci-
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fication of the object type. Symmetrically, after extraction from a container 
each object has to be constrained to a specific type, in order to be manipu­
lated with type-dependent operations. Flow propagation of the pre-insertion 
and post-extraction type information results in a static approximation of the 
contained object types. Such information can be used to refine the class dia­
grams extracted from the code, by recovering some of the otherwise missing 
relations between classes. 

Container classes offer two basic functionalities to user classes: insertion 
methods, to store objects into the container, and extraction methods, to re­
trieve objects out of a container. During OFG construction, these functionali­
ties are abstracted by the two methods insert and extract Their eflFects on the 
object flows are accounted for by replacing their invocations with assignment 
statements, equivalent to the method calls from the point of view of the data 
flows (see Chapter 2, Section 2.3). 

Given the OFG produced by taking container flows into account, a spe-
ciaHzation of the flow propagation algorithm to determine the type of the con­
tained objects is obtained by defining gen and kill sets of each OFG node. Two 
different kinds of flow information can be used to infer the type of contained 
objects: the type of inserted objects can be obtained from their allocation, 
while the type of extracted objects can be obtained from their type coercion. 
For example, (abstract) statements such as ''x = new A(); c.insert(x);" can be 
exploited to estimate the contained object type as that of the allocation, while 
the coerced type in a statement such as "x = (A)c. extract();'\ where "(A)" is 
the syntax for type coercion, can be exploited to associate type A to container 
c. Correspondingly, two executions of the flow propagation algorithm have to 
be conducted, with two different sets of gen and kill sets associated with OFG 
nodes. Moreover, the direction of flow propagation changes when insertion vs. 
extraction information is used. 

(1) p 
(2) D 
(3) 
(4) 
(5) S 
(6) 
(7) 

where in (5) 

::= D*5* 
::= a 

1 m(/i , . . . ,A) 
1 cs(fu-,fk) 

::= X = new c(ai, ...,ajb); gen[cs.this] = 
1 a: = y; 
1 X = y.m(ai,...,ajfc); 

cs is the invoked constructor for class c. 
pen[n] = 0 for all other locations 
kill[n] = 0 for all locations 

{<=) 

Fig. 3.4. Flow propagation specialization to determine the type of objects stored 
inside weakly typed containers, accounting for object insertions and based on allo­
cation information. Forward propagation. 
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Fig. 3.4 provides the gen and kill sets to use when the contained object 
type is estimated from insertion information. Object allocation statements 
provide the precise type of allocated objects. This information is propagated 
from object constructors to the containers, according to the fixpoint algorithm 
described in Chapter 2. The direction of propagation is forward, so that in­
coming information of each node {in[n]) is obtained from the predecessors. It 
can be noted that the same flow analysis specialization has been used to refine 
associations when declared types are superclasses of actual types or interfaces 
(see Fig. 3.2). 

(1) p 
(2) D 
(3) 
(4) 
(5) S 
(6) 
(7) 

::= D*S* 
::= o 
1 m(fu-Jk) 
1 cs(fu-,fk) 

::= X = new c(ai,.. 
1 X = (c)i/; 
1 X = (c)y.m(ai, 

where (c) indicates type coercion. 
pen[n] = 0 for all other locations 
kill[n] = 0 for all locations 

;0,k)\ 

••,a/fc); 

gen[y] = {c} 
gen[m.return] = -.{c} 

Fig. 3.5. Flow propagation specialization to determine the type of objects stored 
inside weakly typed containers, accounting for object extractions and based on type 
coercion. Backward propagation. 

Fig. 3.5 gives gen and kill sets for the second execution of the flow propaga­
tion algorithm, exploiting extraction information. The abstract syntax given 
in Chapter 2 has been enriched with a type coercion operator, "(9"- Each 
time a type coercion occurs on a program location or on the value returned 
by a method, the related type information is generated at the corresponding 
OFG node. In order to reach the container from which an object has been 
extracted, this type information has to be propagated backward in the OFG, 
that is, from the successors of a node to the node itself. In fact, type coercion 
occurs after an object has flown out of a container up to a given location. 
Such data flow has to be reversed to propagate the coerced type back to the 
container. 

After the two flow propagations are complete, the two respective out sets 
of each container location hold the contained object types computed by the 
two specializations described above. The union of these two out sets gives 
the flnal results, i.e., the set of types estimated for the contained objects. 
If several classes from an inheritance subtree are included in the out set of a 
container, it may be appropriate to replace them with the LCA, thus reducing 
the number of connections among entities in the class diagram, and improving 
its readability. 
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-eLib example 

Let us consider the eLib program in Appendix A, and in particular, let us 
focus on methods addUser (line 8) and searchDocumentByTitle (line 90) of 
class Library. Their abstract statements are respectively: 

L i b r a r y . u s e r s = L ib ra ry .addUser .use r ; 

where the assignment has been obtained by transforming the insertion method 
put invoked on L i b r a r y . u s e r s at line 10, and: 

Library.SearchDocumentByTit le . i = Library.documents; 
Library.searchDocumentByTit le .doc = 

(Document)Library.searchDocumentByTitle. i ; 
L ib ra ry . sea rchDocumentByTi t l e .doc .ge tT i t l e ( ) ; 
Library.searchDocumentByTitle.docsFound = 

Library.searchDocumentByTit le .doc; 
Library.SearchDocumentByTit le . re turn = 

Library.searchDocumentByTitle.docsFound; 

where the first and second assignments are the result of transforming invoca­
tions of extraction methods ( i t e r a t o r at line 92 and next at fine 94, resp.), 
while the fourth assignment results from the conversion of an insertion (invo­
cation of add on docsFound at line 96). For completeness, let us consider a 
code fragment from class Main (Appendix B), that performs a user insertion 
into the library: 

347 class Main { 

348 static Library lib = new Library(); 

379 public static void addUser(String cmd) { 

382 User user = new User(args[0], args[l], args[2]); 

383 lib.addUser(user); 

386 } 

536 } 

The abstract statements of this code fragment are: 
Main . l ib = new L i b r a r y O ; 
Main.addUser.user = new U s e r O ; 
Main . l ib .addUser(Main .addUser .user ) ; 
Fig. 3.6 shows (a portion of) the OFG associated with the abstract state­

ments above. Sets genl and gen2 have been obtained according to the rules 
in Fig. 3.4 and 3.5 respectively. Thus, genl is used during the first, forward 
propagation, while gen2 is used in the second, backward flow propagation. 
The cumulative result is: 



56 3 Class Diagram 

Library.searchDocumentByTitle.i^!> gen2={ Document) 

Library.users J) ^T^Document.getTitle.this^^ C^[[]7Library.searchDocumentByTitle.docsFound 

Library .searchDocumentByTitle.return 

Fig. 3.6. OFG for a portion of the eLih program. Set genl is used during forward 
flow propagation, while gen2 is used for backward propagation. 

out [L ib ra ry .users ] = {User} 
out[Library.documents] = {Document} 

This allows a precise estimation of the contained object types. The at­
tribute users of class Library contains objects of type User, so that an 
association can be drawn in the class diagram between Library and User. 
Similarly, the class attribute documents has been found to contain objects of 
type Document, resulting in the recovery of an association between Library 
and Document. Both associations are completely missed if container analysis 
is not performed. 

3.4 The eLih Program 

Fig. 3.7 shows the class diagram obtained by applying the basic reverse engi­
neering method described in Section 3.1, which takes only declared types into 
account, to the eLib program. Since typically interconnections due to depen­
dencies that are not associations tend to make the class diagram less readable, 
they have not been considered in Fig. 3.7. Only the two most important inter-
class relationships, associations and generalizations, are displayed. Moreover, 
class attributes and methods are hidden, to simplify the view, and only class 
names are shown. 

Apparently, the class Library holds no stable reference toward the other 
classes in the system. In fact, it is an isolated node in Fig. 3.7. This is due 
to the usage of Java containers to implement associations with multiplic­
ity greater than one. Specifically, its fields documents, u s e r s and loans are 
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Library 

Fig. 3.7. Class diagram for the eLib program, obtained without container analysis. 

Java containers (the declared type is the interface Map for the first two, and 
Co l l ec t ion for the latter). 

A bidirectional association exists between classes Loan and Document, in 
that a Locin object holds a reference toward the borrowed Document object, 
and vice versa, a borrowed Document has access to the Loaji object with data 
about the loan. While one would expect a similar bidirectional association be­
tween Loan and User, such a connection seems to be unidirectional, according 
to the class diagram in Fig. 3.7. The reason for the missing association be­
tween User and Loan is that the related multiplicity is greater than 1 (a user 
can borrow several documents). From the implementation point of view, the 
problem is the usage of a container (actually, a Col lec t ion) for the field 
loans of class User. On the contrary, since a document can be borrowed by 
exactly one user, the association from Document to Loan has the multiplic­
ity one, and is implemented as a plain reference, that can be easily reverse 
engineered from the code. 

To summarize, the class diagram depicted in Fig. 3.7 does not represent 
associations with multiplicity greater than one, since they are implemented 
through containers. Execution of the container analysis algorithm described 
in Section 3.3 is thus of fundamental importance for this program. 

Fig. 3.8 shows the class diagram for the eLib program, produced by taking 
into account the estimated classes of the objects stored inside containers. The 
previously missing association between User and Loan has now been correctly 
recovered. This is achieved by considering the set out [User. loans] = {Loan} 
after flow propagation for container analysis. 

Class Library is no longer a disconnected node in the diagram. Its con­
tainer attributes have been analyzed, and the type determined for the con­
tained objects allows drawing association relationships toward User, Loan and 
Document. They correspond to an intuitive model of a library, where the list 
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Library 

"7^ 

TechnicalReport 

Fig. 3.8. Class diagram for the eLib program, obtained after performing container 
analysis. 

of registered users is available, as well as the archive of the documents and 
the set of loans currently active. The class diagram in Fig. 3.8 is much more 
informative and accurate than that in Fig. 3.7. A programmer that has to 
understand this application will find it much easier to map intuitive notions 
about a library to software components by means of the diagram in Fig 3.8. 

Fig. 3.9 completes the class diagram in Fig. 3.8 with the dependency 
relationships, which are shown only if they connect two classes otherwise 
not connected by an association (association is subsumed by dependency). 
Class User iteratively accesses Document objects (through the association with 
Loan) inside method p r i n t l n f o (line 323), where code and title of borrowed 
documents are printed (line 332). The related method calls (getCode and 
g e t T i t l e ) are the reasons for the dependency from User to Document. In 
the reverse direction, the dependency is due to calls of methods getCode and 
getName, issued at hues 220 and 221 inside p r i n t A v a l a b i l i t y (line 215). 
When a document is not available, the code and name of the user who bor­
rowed it are printed. The User object on which calls are made is obtained from 
the Loan object (attribute loan) reachable from Document, which is non-null 
in case the document is borrowed (not available). 

The dependency from Journal to User is due to the implementation of 
method authorizedLoan in class Journal (line 253). The base implementa­
tion of this method, in class Document, returns the constant t rue : every user 
is authorized to borrow any document. This implementation is overridden by 
the class TechnicalReport , returning the constant f a l s e (technical reports 
can be consulted, but not borrowed). The class Journal also overrides it, 
delegating the authorization to class User (hereby, the dependency), in that 
only internal users (class In te rna lUser ) are authorized to borrow journals 
(line 254). 
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Library 

Book TechnicalReport 

Fig. 3.9. Class diagram for the eLib program including dependency relationships. 

3.5 Related Work 

Usage of points-to analysis to improve the accuracy of the interclass rela­
tionships is described in [56], where the type of pointed-to objects is used to 
replace the declared type. The results obtained by points-to analysis are com­
parable to those obtained by the OFG based algorithm to handle inheritance, 
given in Section 3.2. Both approaches exploit the object type used in alloca­
tion points to infer the actual type of referenced objects. As discussed in [56], 
this represents a substantial improvement over the Class Hierarchy Analysis 
(CHA) [17], which determines all direct and transitive subclasses of the de­
clared type as possibly referenced by a given program location. CHA becomes 
particularly imprecise in the presence of interfaces as declared types. In fact, 
it is quite typical that a large number of classes implement general purpose 
interfaces (such as the Comparable interface). If all of them are accounted 
for as possible targets of interclass relationships, a completely unusable class 
diagram is derived from the code. In [56], the output of two points-to analysis 
algorithms, described respectively in [68] and [57], is used to determine the 
possibly pointed-to locations for each variable in the given program. The ex­
perimental data show that such information is crucial to refine the inter-class 
relationships associated with dynamic binding. 

In [18], container types are analyzed with the purpose of moving to a hy­
pothetical strongly typed version of the Java containers. A set of constraints is 
derived on the type parameters that are introduced for each potentially generic 
class (e.g., containers). A templated instance of the original class which re­
spects such constraints can safely replace the weakly typed one, thus making 
most of the downcasts unnecessary and allowing for a deeper static check 
of the code. Although based on a different algorithm, this approach is com-
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parable to that described in Section 3.3. In fact, more accurate information 
about the type of objects inserted into containers is inferred from type-related 
statements in the code under analysis. 

An empirical study comparing the results obtained with and without con­
tainer analysis is described in [87]. The class diagrams for the subsystems in 
a large C + + code base were reverse engineered. The number of associations 
missed in the absence of container analysis turned out to be high, and the vi­
sual inspection of the related class diagrams revealed that container analysis 
plays a fundamental role in reverse engineering, when weakly typed container 
libraries are used. 

3.5.1 Object identification in procedural code 

In this chapter, reverse engineering of the class diagram has been presented 
with reference to Object Oriented programs. A lot of work [12, 13, 51, 75, 
80, 88, 102] has been conducted within the reverse engineering research com­
munity, aimed at identifying abstract data types in procedural code. Thus, 
classes are tentatively reverse engineered from procedural (instead of Object 
Oriented) code. 

The purpose of the analyses considered in these works is supporting the 
migration from procedural to Object Oriented programming. It was recognized 
that this migration process cannot be fully automated and the results available 
in the literature provide local approaches which help in some cases, but not 
in others. If a software system was built around data types in the first place, 
it is possible to identify and extract them as objects. If not, it is hard to 
retrofit objects into the system and, until now, no one has come up with a 
general, automated solution for transforming procedural systems into Object 
Oriented ones. In such a case, the output of reverse engineering may be only 
the starting point for a highly human-intensive reengineering activity. 

In [51] the main methods for class identification are classified as global-
based or type-based, respectively when functions are clustered around globally 
accessible objects or formal parameter and return types. A new identification 
method - based on the concept of receiver parameter type - is also proposed. 
The approach presented in [12], which considers accesses to global variables, 
uses an internal connectivity index to decide which functions should be clus­
tered around the recognized class. Such a method is extended in [13] to include 
type-based relations and it is combined with the strong direct dominance tree 
to obtain a more refined result. The recovery technique described in [102] 
builds a graph showing the references of the procedures to the internal fields 
of structures. Accesses to global variables drive the recognition of classes. 

In [27] the star diagram is proposed as a support to help programmers 
restructure programs by improving the encapsulation of abstract data types. 
Another decomposing and restructuring system is described in [58]. Both of 
them provide sophisticated interaction means to assist the user in the process 
of analyzing and restructuring a program. 



3.5 Related Work 61 

Several works [50, 75, 80, 88] on identification and remodularization of ab­
stract data types are based on the output produced by concept analysis [25]. 
The relation between procedures and global variables is analyzed by means of 
concept analysis in [50]. The resulting lattice is used to identify module can­
didates. Concept analysis is used in [75] to identify modules, by considering 
both positive and negative information about the types of the function argu­
ments and of the return value. An example of how to identify class candidates 
from a C implementation of two tangled data structures is provided in [75]. 
Concept analysis succeeds in separating them into two distinct classes. In [88], 
encapsulation around dynamically allocated memory locations and module re­
structuring are considered. Points-to analysis is used to determine dynamic 
memory accesses, while concept analysis permits grouping functions around 
the accessed dynamic locations. Concept analysis is exploited in [80] to reengi-
neer class hierarchies. A context describing the usage of a class hierarchy is the 
starting point for the construction of a concept lattice, from which redesign 
possibilities are derived. 



Object Diagram 

This chapter describes a technique to statically characterize the behavior of 
an object oriented system by means of diagrams which represent the class 
instances (objects) and their mutual relationships. 

Although the class diagram is the basic view for program understanding 
of Object Oriented systems, it is not very informative of the behavior that 
a program will exhibit at run time, being focused on the static relationships 
among classes. On the contrary, the object diagram represents the instances 
of the classes and the related inter-object relationships. This program repre­
sentation provides additional information with respect to the class diagram 
on the way classes are actually used. In fact, while the class diagram shows 
all possible relationships for all possible class instances, the object diagram 
takes into consideration the specific object allocations occurring in a program, 
and for each class instance it provides the specific relationships a given object 
has with other objects. While in the class diagram a single entity represents 
a class and summarizes the properties of all of its instances, in the object 
diagram different instances are represented as distinct diagram nodes, with 
their own properties. Thus, the dynamic layout of objects and inter-object 
relationships emerges from the object diagram, while it is only implicit in the 
class diagram. 

A static analysis of the source code based on the flow propagation in 
the OFG can be exploited to reverse engineer information about the objects 
allocated in a program and the inter-object relationships mediated by the 
object attributes. The allocation points in the code are used to approximate 
the set of objects created by a program, while the OFG is used to determine 
the inter-object relationships. Resulting diagrams approximate statically any 
run-time object creation and inter-object relationship, in a conservative way. 

A second, dynamic technique that can be considered to produce the object 
diagram is based on the execution of the program on a set of test cases. Each 
test case is associated with an object diagram depicting the objects and the 
relationships that are instantiated when the test case is run. The diagram can 
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be obtained as a postprocessing of the program traces generated during each 
execution. 

The static and the dynamic techniques are complementary, in that the 
first is safe with respect to the objects and relationships it represents, but it 
cannot provide precise information on the actual multiplicity of the allocated 
objects (e.g., in presence of loops), nor on the actual layout of the relationships 
associated with the allocated objects (e.g., in presence of infeasible paths). The 
dynamic view is accurate with concern to the number of instances and the 
relationship layout, but it is (by definition) partial, in that it holds for a single 
test run. Therefore, it is useful to contrast the dynamic and static view, to 
determine the portion of the latter that was explored with the available test 
suite and to refine it with information suggested by the dynamic views. 

This chapter is organized as follows: after a summary presentation of the 
object diagram elements, given in Section 4.1, Section 4.2 describes a static 
method for object diagram recovery. It is a specialization of the general pur­
pose framework defined in Chapter 2. Section 4.3 provides the details of an 
object sensitive OFG algorithm for the recovery of the object diagram. The 
dynamic technique for object diagram recovery is presented in Section 4.4. At 
the end of this section, static and dynamic analysis views are contrasted, high­
lighting advantages and disadvantages of both, and providing hints on how 
they can complement each other. Static and dynamic extraction of the object 
diagram is conducted on the eLib program in Section 4.5. Related works are 
discussed in Section 4.6. 

4.1 The Object Diagram 

The object diagram represents the set of objects created by a given program 
and the relationships holding among them. The elements in this diagram (ob­
jects and relationships) are instances of the elements (classes and associations, 
resp.) in the class diagram. The difference between an object diagram and a 
class diagram is that the former instantiates the latter. As a consequence, the 
objects in the object diagram represent specific cases of the related classes. 
Their attributes are expected to have well defined values and their relation­
ships with other objects have a known multiplicity. For each class in the class 
diagram there may be several objects instantiating it in the object diagram. 
For each relationship between classes in the class diagram there may be object 
pairs instantiating it and pairs not related by it. 

The usefulness of the object diagram as an abstract program representa­
tion lies in the information specific to the instantiation of the classes that it 
shows. While the class diagram summarizes all properties that objects of a 
given class may have, the object diagram provides more details on the prop­
erties that specific instances of each class possess. Different instances may 
play different roles and may be involved in different relationships with other 
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objects. While this is not apparent in the class diagram, the object diagram 
represents this kind of information explicitly. 

Let us consider a hypothetical BinaryTree program. In its class diagram, 
there might be one BinaryTreeNode class, with two auto-associations named 
l e f t and r i g h t for the two children, while a possible instance represented 
in the object diagram might include three objects of type BinaryTreeNode, 
playing three different roles (i.e., tree root, left child and right child). The re­
lationships among these three elements are compliant with those in the class 
diagram, but provide more information on the layout of the related instances 
by showing a specific scenario (where the root references two children which 
have no further descendants). Moreover, the object diagram is the starting 
point for the construction of the interaction (collaboration and sequence) di­
agrams, where information about the message exchange between objects is 
added to the class instances, thus focusing the view on the dynamic behavior 
of a set of cooperating objects (a collaboration, in the UML terminology). 

In the following text, two techniques are described for the recovery of 
the object diagram. The first exploits only static information and approxi­
mates the set of objects created in the program by analyzing the allocation 
(new) statements and propagating the resulting objects by means of the flow 
propagation algorithm described in Chapter 2. The second considers a set of 
execution traces, associated with the test cases available for a given program, 
and obtained by running an instrumented version of the given program. Exe­
cution traces include information about each object allocated by the program, 
uniquely identified, and its attributes. Object attributes which reference other 
objects are used to recover inter-object associations. These two techniques 
have advantages and disadvantages, and it is therefore desirable to be able to 
compute and integrate the results of both of them. 

4.2 Object Diagram Recovery 

The static computation of the object diagram exploits the flow propagation 
on the OFG to transmit information about the objects that are created in the 
program up to the attributes that reference them. Objects are identified by 
allocation site (i.e., the line of code containing the allocation statement), with 
no regard to the actual number of times it is executed (which is, in general, 
undecidable for a static analysis). 

Fig. 4.1 shows the flow information that is propagated in the OFG to 
recover the object diagram. Each allocation site (statement of kind (5)) is 
associated with a unique object identifier, constructed as the class name c, 
subscripted by an incremented integer i (giving the object identifier ci). Such 
flow information is propagated in the OFG according to the algorithm given 
in Chapter 2, in the forward direction. 

Construction of the object diagram is a straightforward post-processing 
of the computation described above. Every object identifier Cj generates a 
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(1) p 
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(7) 

where in (5) Q 

::= D*S* 
::= a 

1 rn{fu...Jk) 
1 csifu...Jk) 

::= X = new c(ai,..., Ofe); gen[x] = { Q } 
1 a: = ?/; 
1 [x =] 2/.m(ai,...,aik); 

is the object identifier associated with this allocation site. 
pen[n] = 0 for all locations different from the left hand side x in (5) 
kill[n\ = 0 for all locations 

Fig. 4.1. Flow propagation specialization to determine the set of objects allocated 
in the program that are referenced by each program location. 

corresponding node in the object diagram. Every node in the OFG associated 
to an object attribute, i.e., having a prefix "c" and a suffix ".a", where a is an 
attribute of class c, is taken into consideration when inter-object associations 
are generated. The out set of such an OFG node (i.e., out[c.a]) gives the 
set of objects reachable from all objects Ci of class c along the association 
implemented through the attribute a. Such an association can thus be given 
the name of the attribute, a. 

binary search tree example 

class BinaryTreeNode { 
BinaryTreeNode l e f t , r ight ; 
public void addLeft(BinaryTreeNode n) { lef t = n; } 
public void addRight(BinaryTreeNode n) { right = n; } 

} 

class BinaryTree { 
BinaryTreeNode root; 
public void buildO { 

root = new BinaryTreeNode(); 
BinaryTreeNode curNode = root; 
while (...) { 

curNode.addLeft(new BinaryTreeNode()); 

curNode.addRight(new BinaryTreeNode()); 
} 

} 
static public void main(String args[]) { 

BinaryTree bt = new BinaryTree(); 
bt. build 0; 

} 
} 
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The abstract syntax representation of the Java code fragment above is the 
following: 

BinaryTreeNode.left = BinaryTreeNode.addLeft.n; 
BinaryTreeNode.right = BinaryTreeNode.addRight.n; 
BinaryTree.root = new BinaryTreeNode(); 
BinaryTree.build.curNode = BinaryTree.root; 
BinaryTreeNode.addLeft.n = new BinaryTreeNode 0 ; 
BinaryTreeNode.addLeft.this = BinaryTree.build.curNode; 
BinaryTreeNode.addRight.n = new BinaryTreeNode(); 
BinaryTreeNode.addRight.this = BinaryTree.build.curNode; 
BinaryTree.main.bt = new BinaryTree(); 
BinaryTree.build.this = BinaryTree.main.bt; 

Fig. 4.2. Object flow graph for the binary tree example. 

Fig. 4.2 shows the OFG derived from the abstract statements above. Non 
empty gen sets of OFG nodes are also shown. Objects of type BinaryTreeNode 
are allocated at three distinct program points, thus originating three ob­
ject identifiers, BinaryTreeNode 1, BinaryTreeNode2 and BinaryTreeNodeS, 
which are in the gen set of the respective left hand side locations (BinaryTree-
. root , BinaryTreeNode.addLeft.n and BinaryTreeNode.addRight.n). Since 
there is just one allocation statement for BinaryTree objects, the only ob­
ject identifier for this CIEISS is BinaryTree 1, inserted into the gen set of the 
allocation left hand side, BinaryTree .main .bt . 

After flow propagation, the following out sets are determined for the class 
attributes: 

oiit [BinaryTree. roo t ] = {BinaryTreeNode 1} 
oni [BinaryTreeNode.left] = {BinaryTreeNode2} 
ow^ [BinaryTreeNode.r ight] = {BinaryTreeNodeS} 

Construction of the object diagram is now possible. Every object identi­
fier becomes a node in the object diagram. Thus, in the example above four 
nodes are inserted into the diagram, three of class BinaryTreeNode and one of 
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class BinaryTree. The out sets of the class attributes after flow propagation 
determine the inter-object associations. Thus, object BinaryTree 1 is associ­
ated with BinaryTreeNodel through the attribute root , used as the associ­
ation name. All three objects of type BinaryTreeNode are associated with 
BinaryTreeNode2 through a link named l e f t , and with BinaryTreeNodeS 
through a hnk named r i g h t . 

BinaryTree I RinaryTrefiJ 

BinaryTreeNode 
right 

left ( ] RinaryTrpftMndflP [^T^ J ^ RinaryTrRftNnrlft.^rL ) "S^ 

left 

Fig. 4.3. Class diagram (left) and object diagram (right) for the binary tree exam­
ple. 

Fig. 4.3 shows the object diagram recovered from the code of the binary 
tree example on the right. For comparison, the related class diagram is de­
picted on the left. As apparent from this figure, the class diagram is less infor­
mative than the object diagram. In fact, the three elements BinaryTreeNodel, 
BinaryTreeNode2, BinaryTreeNode3 of the object diagram are collapsed into 
a single element (BinaryTreeNode) in the class diagram, with two auto-
associations ( l e f t and r i g h t ) . The object diagram makes it clear that the 
attribute roo t of class BinaryTree always references the object identified as 
BinaryTreeNodel (first allocation site), while attributes l e f t and r i g h t ref­
erence respectively the objects BinaryTreeNode2 (second allocation site) and 
BinaryTreeNodeS (third allocation site). 

4.3 Object Sensitivity 

A more accurate estimate of the relationships among the objects allocated 
in a program can be obtained by means of an object sensitive analysis (see 
Chapter 2 for the general framework). Program locations are distinguished 
by the object they belong to instead of their class. Given the allocation sites 
in the program under analysis, an object identifier Ci is associated to each of 
them. A program location n originally scoped by class c, gives rise to a set of 
OFG nodes n', scoped by object identifiers c ,̂ when an object sensitive OFG 
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is constructed. Specifically, for each object identifier Ci created for class c, a 
replication of the program location n scoped by ci is inserted into the object 
sensitive OFG. This gives the complete set of OFG nodes. The main drawback 
is that construction of OFG edges becomes more complicated in case of object 
sensitive analysis. 

(1) P ::= D*S* {} 
(2) D ::= a {} 
(3) I m(/i , . . . , / , ) {} 
(4) I C5(/i,...,A) {} 
(5) 5 ::= x = new c(ai, ...,afc); [{a[,f[)eE,...,{a'f^,fl)EE,(cs'.this,x')eE} 
(6) I x = y; {iy',x')eE} 
(7) I [x =] 2/.m(ai,...,aA,); {(y',m'.this) 6 E,{a[,fi) G E,...,(a[,f'k) e E, 

{m'.return, x') E E} 

where, for each class scoped location x, x' represents the corresponding object 
scoped location. In (5), cs is the invoked constructor for class c. 

1. In (5), scope(cs') — Ci, scope(f[) = Ci, ..., scope(fl) = Ci, with Ci the 
object identifier of the allocation site (5). 

2. In (5), (6), (7), if a;,i/,oi,...,aifc are local variables, current method's pa­
rameters, or current object's attributes, scope{x') = Cj, scope{y') = Cj, 
scope(a[) = Cj, ..., scope{a'j^) = Cj, with Cj the object identifier scoping 
the current method. If they are accesses to attributes of objects other 
than the current one, of the kind p.a, scope(x') = C/t, with Ck running over 
out[p]. 

3. In (7), if y.m is a call performed on the current object {y ends with this) , 
scope{m') = Cj, scope{f[) = Cj, ..., scope{fl) = Cj, with Cj the object 
identifier scoping the current method. If it is a call performed on an 
object other than the current one, scope(m') = Cfc, scope(f[) = Cfc, ..., 
scope(f'^) = Cjfc, with Ck running over out[y]. 

Fig. 4.4. Incremental construction of OFG edges for object sensitive analysis. 

Fig. 4.4 shows the rules for OFG edge construction, when an object sen­
sitive analysis is conducted. Some object scoped locations connected by OFG 
edges can be computed directly from the abstract syntax of the code under 
analysis. This happens when the scope of the location is the object allocated 
at the current statement or the object scoping the current method. Let us 
consider statement (5) in Fig. 4.4. The scope of the invoked constructor cs is 
the currently allocated object Q , so that all formal parameters / i , . . . , / ^ , as 
well as the t h i s location inside cs {cs'.this), will be scoped by Q . 

Class methods are replicated for each object of the given class allocated 
in the program. Inside such copies, a unique identifier Cj of the current object 
( this) is available. It defines the scope of local variables, method parameters, 
and attributes of the current object. 

The most difficult case is when an attribute is accessed or a method is 
called through a location other than t h i s . In fact, in such a case, the target 
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attribute or method belongs to an object other than the current one. If the 
attribute access has the form p.a and the method call has the form p.m(...), 
the object scoping the related program locations is not directly available from 
the abstract statements. It can be obtained by executing the flow propaga­
tion algorithm for object analysis described in Section 4.2. However, such an 
algorithm requires the availability of the OFG, which has been built only 
partially. This is the reason why the rules in Fig. 4.4 have to be applied in­
crementally. During the first iteration of OFG construction, out[p] = 0 for all 
locations p. Thus, only OFG edges connecting locations scoped by Ci or Cj 
(resp., the object allocated at current statement and the object scoping the 
current method) can be added to the OFG. Once this initial OFG is built, 
flow propagation for object analysis can be performed, giving a first estimate 
of the objects Ck G out[p]. These objects can be used to scope the accesses to 
attributes of objects other than the current one, or method names and param­
eters, in case of an invocation to a target different from the current object. 
This allows adding more edges to the OFG, connecting locations scoped by 
Cfc, an object different from the current one. The refined version of the OFG 
allows an improved estimation of the objects Ck G out[p\ for each location p, 
thus possibly augmenting the set of edges added to the OFG, according to the 
rules in Fig. 4.4. At the end of this process, when no more edges are added to 
the OFG, the final, object sensitive OFG is obtained. OFG nodes will have out 
sets storing object identifiers determined through an object sensitive analysis. 
Thus, the object diagram derived from them is expected to be more accurate 
than the one constructed by an object insensitive analysis. 

The algorithm described above produces quite precise object diagrams, 
since object flows are not mixed when they belong to the same class but to 
different objects. However, it requires replicating the program locations for all 
allocation sites, thus generating a larger OFG. Moreover, it assumes that the 
whole program is available for the analysis. In fact, if an allocation point for 
a class is not part of the code under analysis, some of the related edges in the 
OFG are missed, since out\p] will remain empty during all OFG construction 
iterations. In other words, the result of the object sensitive analysis is still safe 
(conservative) only if the whole system is available for the analysis, including 
all object allocation statements. 

binary search tree example 

Let us consider the following Java code fragment for a binary tree program. 
Two binary tree data structures, b t l and bt2 , are created to handle two 
different kinds of data elements: objects of class A and objects of class B. 

class BinaryTreeNode { 
BinaryTreeNode l e f t , r ight ; 
Comparable object; 
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BinaryTreeNode(Comparable obj) { 

object = obj; 

} 

class BinaryTree { 
BinaryTreeNode root; 
public void insert(BinaryTreeNode n) { 

if (root == null) { 
root = n; 

} else { 
root.insert(n); 

} 
} 

class Main { 
public static void main(String args[]) { 

BinaryTree btl = new BinaryTree(); 
BinaryTree bt2 = new BinaryTree(); 

A a = new A(); 
BinaryTreeNode nl 
btl.insert(nl); 

new BinaryTreeNode(a); 

B b = new B(); 
BinaryTreeNode n2 = new BinaryTreeNode(b); 
bt2.insert(n2); 

out= {BinaryTreeI, BinaryTree2} 

^ ^ Binary TreeNode.objecl 

o u t = { A I , B l ) 

BinaryTree.root 

out = {BinaryTreeNode I, BinaryTreeNode2) 

Fig. 4.5. Object insensitive OFG for object analysis. 

Fig. 4.5 shows the object insensitive OFG built for the code fragment 
above. All program locations are scoped by the class they belong to. The 
out sets provided for some OFG nodes are those obtained after completing 
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the flow propagation on the OFG. They will be used for the object diagram 
construction. 

out={AI) 

Binary Tree I. root 

out = {BinaryTreeNodel} 

out = {Binary Tree2} 

BinaryTree2.root 

out = {BI) out = {BinaryTreeNode2} 

Fig. 4.6. Object sensitive OFG for object analysis. 

Fig. 4.6 shows the corresponding object sensitive OFG. Program locations 
are replicated for all allocated objects of their class. During the first iteration 
of the OFG construction, performed according to the incremental rules in 
Fig. 4.4, the edges marked with an asterisk cannot be added to the graph. In 
fact, they are originated by the two invocations: 

btl. insert (nl); 
bt2.insert(n2); 

which have invocation targets different from t h i s . According to rule 3 in 
Fig. 4.4, the objects scoping the method name and the formal parameters 
of the method are to be obtained respectively from OIA^[Main.main.btl] 
and ow^[Main.main.bt2], but both sets are initially empty. Consequently, 
an OFG is built with missing edges, associated with these two calls (asterisks 
in Fig. 4.6). 
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On the initial, partial OFG, the object analysis algorithm is run, and the 
result of the flow propagation at the two nodes of interest is: 

ow^ [Main.main.bt l ] = {BinaryTreel} 
ow^ [Main.main.bt2] = {BinaryTree2} 

This allows computing a proper scope for i n s e r t and its formal parameter 
n. Specifically, the invocation b t l . i n s e r t ( n l ) results in the addition of the 
two topmost edges marked with an asterisk in Fig. 4.6, since the target object 
of this invocation has been determined to be BinaryTreel by the previous flow 
propagation step. Similarly, b t 2 . i n s e r t ( n 2 ) gives rise to the two asterisked 
edges at the bottom. 

A new iteration of the flow propagation gives the final result of the ob­
ject analysis. Some of the out sets obtained after this final flow propagation 
are shown in Fig. 4.6. They are exploited for the construction of the object 
diagram. 

I RinaryTrfifiJ I BinaryTrftft2 

I RinaryTrfiftNndftI 

object 

I RinaryTrPPNnrJPP 

object 

Ai. Hi 

Fig. 4.7. Object diagram computed by an object insensitive analysis (left) and by 
an object sensitive analysis (right). 

Object insensitive (Fig. 4.5) and object sensitive (Fig. 4.6) results are 
associated to the two object diagrams respectively on the left and on the right 
of Fig. 4.7. When object insensitive results are used for an object diagram 
construction, each class attribute is scoped by the class name, so that the 
relationships it induces are rephcated for every object of that class. Thus, 
for example, the presence of BinaryTreeNodel and BinaryTreeNode2 in the 
out set of BinaryTree . roo t originates the four associations labeled roo t in 
the object diagram on the left. Similarly, four associations labeled objec t are 
generated due to the output of BinaryTreeNode.object. 

On the contrary, in the object sensitive OFG, class attributes are scoped 
by the object they belong to. Thus, the attribute roo t has two replications in 
Fig. 4.6, namely B ina ryTree l . roo t and BinaryTree2. root , each with a dif­
ferent outset. Since only BinaryTreeNodel is in the owiof BinaryTreel . roo t , 
and only BinaryTreeNode2 is in the out of BinaryTree2. root , just two 
edges are constructed in the object diagram on the right for the associa-
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tion labeled roo t . Similarly, the output of BinaryTreeNodel .object and 
BinaryTreeNode2. object in the object sensitive OFG allows drawing the two 
associations labeled object in the object diagram on the right in Fig. 4.7. 

The object diagram obtained by the object sensitive analysis conveys ac­
curate information about the data elements stored in the two binary trees 
b t l and bt2 . In fact, node BinaryTreeNodel has an attribute object that 
points to Al, while BinaryTreeNode2 points to Bl (see Fig. 4.7, right). This 
indicates that the first tree is used to manage objects of class A (created at 
allocation point 1), while the second tree has a different purpose: managing 
objects allocated as Bl. On the contrary, the object insensitive diagram is less 
accurate and does not allow distinguishing the data elements stored in the 
two trees. 

Both object diagrams in Fig. 4.7 are safe, that is, they represent a conserva­
tive superset of all inter-object relationships that may occur at run time. How­
ever, the object sensitive one is more precise. The object insensitive diagram 
contains spurious associations, but has the advantage of being computable 
even when not all object allocations are part of the code under analysis. 

4.4 Dynamic Analysis 

The dynamic construction of the object diagram is achieved by tracing the 
execution of a target program on a set of test cases. The tracing facilities 
required are basically the possibihty to inspect the current object and its 
attributes each time a method is invoked on an object and its statements are 
executed. Trace data should include an object identifier for the current object 
and for any object referenced by the current object's attributes. 

It is possible to obtain these dynamic data either by exploiting available 
tracing tools or by instrumenting the given program. In case of program in­
strumentation, the following additions are required: 

• Classes are augmented with an object identifier, which is computed and 
traced during the execution of class constructors. 

• Upon an attribute change, the identifier(s) of the object(s) referenced by 
the given attribute are added to the execution trace. 

• Time stamps are produced and traced when either of the two events above 
occurs. 

Each program execution is thus associated with an execution trace, the 
analysis of which produces an object diagram. Consequently, the outcome 
of the dynamic analysis is a set of object diagrams, each associated with a 
test case, providing information on the objects and the relationships that are 
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instantiated in the test case. Their construction from the execution trace is 
straightforward. The identifier of each object in the execution trace is associ­
ated to a node in the dynamic object diagram. The identifiers of the objects 
referenced by the current object's attributes determine the relationships be­
tween the current object and the other ones. 

Since the relationship between two objects on a given attribute may change 
over time, if such an attribute is successively reassigned, in the execution trace 
multiple target objects may be associated to the same attribute at different 
times, resulting in more than one association to be drawn in the object dia­
gram for that attribute. Their interpretation is that there exists a time interval 
when each drawn relationship actually holds. The traced time stamps are ex­
ploited when the dynamic object diagram is built, to decorate objects and 
associations with the time interval that represents their life span (from cre­
ation time to deletion time). Snapshots of the object diagram at a given time 
point or for a given interval can also be derived from the overall diagram. 

J)mary search tree example . 

With reference to the binary tree example described in Section 4.3, let 
us assume that the tree is kept ordered according to the compareTo method 
available for the attribute object (inside class BinaryTreeNode), which im­
plements the Comparable interface. A test case may consist in the creation of 
one or more BinaryTreeNode objects, with a S t r i n g parameter assigned to 
the attribute objec t , and the insertion of the newly created node into a same 
BinaryTree. We can, for example, consider the following sequences of three 
strings as our test cases TCI , TC2, TC3. A node is created and inserted into 
the binary tree for each string encountered in the sequence: 

TCI ("a", "b" , "c") 
TC2 ("b" , "a" , "c") 
TC3 ("c" , "b" , "a") 

Test case 

TCI 

TC2 

TC3 

Relationships 
BinaryTree1.root = BinaryTreeNode1 
BinaryTreeNode1.right = BinaryTreeNode2 
BinaryTreeNode2.right = BinaryTreeNodeS 
BinaryTree1.root = BinaryTreeNode1 
BinaryTreeNode1.left = BinaryTreeNode2 
BinaryTreeNode1.right = BinaryTreeNodeS 
BinaryTree1.root = BinaryTreeNode1 
BinaryTreeNode1.left = BinaryTreeNode2 
BinaryTreeNode2.left = BinaryTreeNodeS 

Time int. 

[1-3] 
[2-3] 
[3-3] 

[1-3] 1 
[2-3] 
[3-3] 
[1-3] 
[2-3] 
[3-3] 

Table 4.1. Relationships and time intervals gathered from the execution traces. 
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[0-3] 

Binary TrRfiNndel 
[IzS] 

object="a" 

Binary Tree I 
[0-3] 

(TC2) 
Ilz31_ 

object="b" 

BinaryTreel 
[0-3] 

RinaryTrppNndel 

[izS] 
object="c" 

(TCI) 
RinaryTrpeNndp.2 

[2z3] 
object="b" 

RinaryTrppNndp.7 
[2-3] 

object="a" 

RinaryTreeNnde3 
[3-3] 

object="c" 

RinaryTrf.RNndp,2 
[2-3] 

object="b" 
(TC3) 

RinaryTreeNndfi3 
[3 -3] 

object="c" 

RinaryTreeNnde3 
[3z3] 

object="a" 

Fig. 4.8. Dynamic construction of object diagrams for test cases TCI, TC2 and 
TC3. 

The execution traces for these three test cases contain the information in 
Table 4.1 (attributes with n u l l value have been removed from the execution 
trace, being not relevant for the construction of the object diagram). Time 
intervals in which a given relation holds are given in square brackets. 

The analysis of the three execution traces produces the three object dia­
grams depicted in Fig. 4.8. In TCI, all child nodes are added on the right. In 
TC2, the tree is balanced, while in TC3 only left children are present. The 
life span of objects and relationships is in square brackets. 

4.4.1 Discussion 

Static extraction and dynamic extraction of the object diagram produce dif­
ferent but complementary information about the instantiations of the classes 
performed by a program. The static object diagram gives a conservative view 
of the objects that are possibly created by the program and of the relation­
ships that may exist between the objects. The number of objects reflects the 
number of program locations where an allocation statement is present. If such 
a statement is executed multiple times, the actual multiplicity of the related 
object is greater than the multiphcity indicated in the static object diagram 
(i.e., one). The presence of a relationship between two objects in the static 
object diagram indicates that there is some path in the program along which 
the first object may reference the second one (through some of its attributes). 
The existence of a path in the program does not imply that such a path 
is traversed in every execution. As a consequence, the relationships between 
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objects indicated in the static object diagram are a conservative superset of 
those actually instantiated at run time. Moreover, it may happen that some 
of these relationships are associated to paths that can never be followed, for 
any input value. This is typical of static analysis: the solution is conservative, 
but may include infeasible parts, due to mutually exclusive conditions on the 
input values. 

The dynamic object diagram complements the static one, in that objects 
are replicated in it each time a same allocation statement is re-executed, thus 
giving a better picture of their actual multiplicity. However, such a diagram 
is always partial, being based on a limited and necessarily incomplete set of 
test cases. An indication of the parts of the object diagram not yet explored 
can be obtained by contrasting it with the static object diagram. Objects and 
relationships in the static object diagram that are not represented in the dy­
namic one are associated respectively to allocation statements and execution 
paths not exercised by the available test cases. 

Mnary search tree example . 

Test case 

TCI 

TC2 

TC3 

Static diagram 

BinaryTreel 
BinaryTreeNodel 
BinaryTreeNode2 
BinaryTreeNodeS 

BinaryTreel 
BinaryTreeNode1 
BinaryTreeNode2 
BinaryTreeNodeS 
BinaryTreel 
BinaryTreeNodel 
BinaryTreeNode2 

BinaryTreeNodeS 

Dynamic diagram | 

BinaryTreel 1 
BinaryTreeNodel 

~ 
BinaryTreeNode2 
BinaryTreeNodeS 
BinaryTreel 
BinaryTreeNodel 
BinaryTreeNode2 
BinaryTreeNodeS 
BinaryTreel 
BinaryTreeNodel 
BinaryTreeNode2 
BinaryTreeNodeS 

-

Table 4.2. Correspondence between statically and dynamically identified objects. 

As depicted in Fig. 4.3 (right), the binary tree example hsis a static object 
diagram with 4 nodes and 7 edges. The first test case executed on it (Fig. 4.8, 
TCI) instantiates its objects in 3 out of the 4 locations identified statically. 
Allocation of a BinaryTreeNode in case of left insertion (addLef t ) is not 
exercised in TCI . Consequently, the two edges leaving BinaryTreeNode2 in 
the static object diagram and the two incoming edges are not represented 
in the first dynamic object diagram. However, the first dynamic object dia­
gram provides some additional information on the multiplicity of the object 
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BinaryTreeNodeS (Fig. 4.3), which appears to be greater than 1. On the 
contrary, a unitary multiphcity seems to be confirmed for BinaryTreel and 
BinaryTreeNodel (Fig. 4.3). Correspondence between the objects identified 
statically and those identified dynamically is as indicated in Table 4.2. 

The second test case generates a dynamic object diagram (Fig. 4.8, TC2) 
in which all objects in Fig. 4.3 are represented. The last test case (Fig. 4.8, 
TC3) reveals that the multiphcity of BinaryTreeNode2 (Fig. 4.3) can also be 
greater than 1. 

The comparison of the diagrams in Fig. 4.8 (right) with that in Fig. 4.3 
highlights the different and complementary nature of the information they 
provide. The actual shape of the allocated objects (a tree) becomes clear only 
when the dynamic diagrams are considered. However, they cannot be taken 
alone, since they do not represent all possible cases that may occur in the 
program. Inspection of the static object diagram allows detecting portions 
of the code not yet exercised, which are relevant for the construction of the 
objects and of the inter-object relationships, and therefore could contribute 
to the understanding of the object organization in the program. 

With reference to the diagram in Fig. 4.3, the relationship between 
BinaryTreeNode2 and BinaryTreeNodeS labeled r i g h t , and that between 
BinaryTreeNodeS and BinaryTreeNode2 labeled l e f t , are not represented 
in any dynamic diagram (see Fig. 4.8). Two additional test cases can be de­
fined to exercise them: 

TC4 ("c" , "a" , "b") 
TC5 ("a", " c " , "b") 

This highlights one of the advantages of combining the static and the 
dynamic method, consisting of the support given to the programmers in the 
production of the test cases. 

4.5 The eLib Program 

The code of the classes in the eLib program, provided in Appendix A, does 
not contain the statements allocating objects of type User, Book, etc. In fact, 
it is assumed that an external driver program performs such allocations. The 
classes in this appendix offer functionalities for general library management, 
but do not include a sample implementation of an actual library application. 
Appendix B contains an example of such an application, with a driver class 
(Main) that can be used to create a library, add/remove users and documents 
and manage the process of borrowing/returning documents. This is the list of 
commands that can be issued to the Main driver from the command prompt: 
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addUser name, address, phone 
addlntUser name, address, phone, id 
rmUser userld 
addBook title, authors, ISBN 
addReport title, ref, authors 
addJournal title 
rmDoc docid 
borrowDoc userld, docId 
returnDoc docId 
searchUser name 
searchDoc title 
isHolding userld docId 
printLoans 
printUser userld 
printDoc docId 
exit 

Each command is dispatched by the method dispatchCommand (line 504), 
triggering the execution of a proper method of class Main (the method name is 
coincident with the command name). In turn, the called method exploits the 
functionaUties provided by the core classes of the eLib program to complete 
its task. Thus, for example, method addUser (line 379) creates a new User 
object, passing the parameters of the command (name, address , phone) to 
the constructor (line 382). The resulting object is added to the library by 
calling method addUser on the static attribute l i b of class Main (line 383). 
Such an attribute references a statically allocated Library object, accessible 
to all methods of class Main. 

A meaningful object diagram can be produced for the eLib program by 
analyzing both the code in the core classes (Appendix A) and that in the driver 
class (Appendix B). Actually, core classes perform just allocations of objects 
of type Loan, inside methods for loan management, such as borrowDocument 
(line 60), returnDocument (line 70) and isHolding (Hne 78). All the other 
object allocations are performed inside methods of class Main (Appendix B). 
Thus, if class Main is not included, a scarsely informative object diagram 
would be obtained, with only three nodes representing objects of type Loan, 
disconnected with each other. 

4.5.1 OFG Construction 

The OFG representing object allocations in the Main class and object propa­
gation from allocation points to class attributes is shown in Fig. 4.9. Allocated 
objects are in the gen sets of the left hand side locations of allocation state­
ments. The result of flow propagation is depicted only for nodes representing 
class attributes ( L i b r a r y . u s e r s . Library.documents, etc.). Their outsets 
contain the possibly referenced objects, according to the result of the static 
object analysis conducted on this OFG. 
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^^Main.addUser.user _̂  ^_\1ain.addIntUser.uscr 

gen={Userl) N. /''^gen=(IniemalUserl) 

n.user 

out=IUserl. IntemalUserl \ 

Btwk.Book.this _̂  C^TTechnicalReport.TechnicalReport.lhis^]^ ^^Journal.Joumal.this _^ 

Q^ain.borrowDoc.doc^ 

Library.borrowDocumenl.doc_J]> CT Documenl.gelTii le.thisJ^ 

out= {Book 1, TechnicalReportl, Journal 1) 

Fig. 4.9. OFG of the eLib program for object diagram recovery, driver class. 
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It can be noted that invocation of method authorizedLoan on the param­
eter doc of method borrowDocument (class Library) at Une 59 is a polymor­
phic call. Consequently^ the method actually invoked may be that defined in 
class Document, or that overridden by classes Journal and TechnicalReport 
(Book does not override it), depending on the actual type of the invocation 
target doc. Conservatively, edges in the OFG are drawn from the node asso­
ciated with doc to the t h i s location of all methods possibly invoked in the 
polymorphic call (see Fig. 4.9, bottom right edges). 

Construction of the OFG in Fig. 4.9 requires a transformation of the state­
ments involving containers, as described in Chapter 2. For example, the edge 
from Libra ry .addUser .use r to L i b r a r y . u s e r s results from the invocation 
of method put on Library .u se r s , an object of type Map (line 10). 

gen={Loan2} 

Document.loan 

out={Loanl) 

Fig. 4.10. OFG of the eLib program for object diagram recovery, core classes. 

Fig. 4.10 contains the OFG for allocation points inside the core classes 
(Appendix A). Containers are handled similarly as for the OFG in Fig. 4.9. 
Only objects of type Loan are allocated inside core classes code. The Loan 
object allocated inside method borrowDocument at hne 60 is named Loanl, 
the one allocated inside returnDocument at line 70 is named Loan2, and the 
one allocated inside isHolding at line 78 is named LoanS. The OFG portion 
that propagates these objects is shown in Fig. 4.10, where allocated objects 
are contained in gen sets. No node has a gen set containing LoanS, since this 
object is not propagated any further inside user classes. It is just used to check 
the presence of a Loan object referencing a given User and Document in the 
Co l l ec t ion loans of class Library (line 78). This requires a direct invocation 
of method con ta ins , implemented by a standard library (not a user) class. In 
Fig. 4.10, out sets are shown only for locations representing class attributes. 
They are exploited for object diagram construction. 
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4.5.2 Ob jec t D i a g r a m Recovery 

[Tfir.hnir.alRftpnrt1 

Fig. 4.11. Object diagrams for the eLib program. On the left, the diagram recovered 
from the driver class alone. On the right the complete diagram. 

Fig. 4.11 depicts the object diagrams that are derived from the out infor­
mation associated with nodes that represent class attributes. Specifically, the 
diagram on the left was obtained by considering only the allocation points 
in the driver class (Main), that is, using the results of flow propagation on 
the OFG of Fig. 4.9 only. Attributes use r s and documents of class Library 
have been found to reference objects Userl , I n t e rna lUse r l and Bookl, 
TechnicalRepor t l , Jou rna l l respectively. Since one object of type Library 
is allocated in the driver class (Library 1), the object diagram contains such 
an object with outgoing edges toward Userl , I n t e r n a l U s e r l labeled users , 
and toward Bookl, TechnicalRepor t l , Jou rna l l labeled documents. 

When the core classes of eLib are also analyzed (OFG in Fig. 4.10), the 
objects Loanl, Loan2, Loan3 are added to the object diagram. Objects Loan2 
and Loan3 do not reach any class attribute in the OFG after flow propagation. 
This means that they cannot be stored inside any class attribute. Actually, 
they are temporary objects used respectively to remove a Loan from the library 
loans (line 71) and to check if a Loan with given User and Document exists in 
the library list of the loans (fine 78). In the first case, the method removeLoan 
(line 48) is executed. It removes the given Loan from the list of the loans of 
the library, and it updates User and Document linked to the Loan object 
consistently. However, the two temporary objects Loan2 and LoanS are no 
longer accessible after the completion of the returnDocument and isHolding 
operations. 

According to the result of flow propagation in the OFG of Fig. 4.10, the ob­
ject Loanl is referenced by the attributes loan of Document, loans of Library, 
and loans of User. This is reflected in the object diagram by new associations 
outgoing from all objects of type Document, Library and User, and of any sub­
type. The attributes user and document of class Loan are found to contain the 
objects Use r l , I n t e r n a l U s e r l and Bookl, Technica lRepor t l , Journa l l 
respectively (see out sets in Fig. 4.9). Thus, all objects of type Loan will have 
an association with User l , I n t e rna lUse r l named user and with Bookl, 
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Technica lRepor t l , Journal 1 named document. The final object diagram is 
shown in Fig. 4.11, on the right. 

4.5.3 Discussion 

By contrasting the class diagram recovered in Chapter 3 (Section 3.4) for 
the eLib program and the object diagram in Fig. 4.11 (right), the different 
nature of the information they convey becomes apparent. In the object di­
agram, only classes of actually allocated objects are present. Thus, no node 
of type Document is in the object diagram, since only objects of subclasses 
are allocated in the program. On the contrary, in the class diagram, the class 
Document is represented. Moreover, in this diagram the inheritance hierarchy 
is visible, while it is flattened in the object diagram, where emphasis is on 
the actual allocation type, instead of the declared type. Correspondingly, the 
relationships in the class diagram are replicated in the object diagram for all 
objects descending from a given class. For example, the link from Document to 
Loan is replicated for Bookl, TechnicalRepor t l and Journa l 1 in the object 
diagram. However, the target of the link is Loanl, but not Loan2 or Loan3. 
In other words, a link in the class diagram has disappeared in the object dia­
gram, since the related class instances are never associated with each other by 
such a link. This occurs, in our example, for all incoming edges of class Loan 
in the class diagram, which disappear when the instances Loan2 and Loan3 
are considered. Differently from Loanl, these two instances of class Loan do 
not participate in the associations from classes Document and User, and in 
the association from class Library depicted in the class diagram. Such kinds 
of information are not available from the class diagram, which generically in­
dicates a set of associations for class Loan. Only when allocations of objects 
of class Loan are analyzed in detail, does it become clear that the object al­
located inside borrowDocument is the one participating in the associations, 
while the other two do not. 

Another interesting information that can be derived from the object di­
agram, but which is missing in the class diagram, is related to the outgoing 
links of objects Loan2 and Loan3. The document and the user that are ref­
erenced by these two temporary objects are those allocated inside the Main 
driver, and extracted from Libra ry , documents and Library .u se r s respec­
tively (see also the OFG in Fig. 4.9). Actually, when a document is returned 
(temporary object Loan2) or when the presence of a loan is checked (tempo­
rary object LoanS), the involved document is obtained from the library by 
documentCode (docId in the command issued to the Main driver), resp. at 
Hues 448 and 482. The user is either accessed by userCode (line 481), or it is 
obtained as the user who borrows a given document (method getBorrower, 
line 450). In all these cases, User and Document objects are extracted from 
those stored in the library, as depicted in the object diagram (Fig. 4.11, right). 
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4.5.4 Dynamic analysis 

Let us consider a program execution in which the following commands are 
prompted: 

addlntUser J. Smith, 5th a v e . , 214343, cs203 
addlntUser D. White, 4th s t r e e t , 212989, cs455 
addBook Introduction to Java, B. Black, 213455213455 
addBook A Guide to UML, R. Red, 455455455455 
addJournal Computer Science Journal 
borrowDoc 0, 2 
returnDoc 2 
isHolding 0, 2 
e x i t 

The related execution trace (over time) is given in Fig 4.12. During the 
static initialization of classes, the object L ib ra ry l is created and is assigned 
to the attribute l i b of class Main (time 0). Creation of two internal users at 
times 1, 2 results in two new objects, I n t e rna lUse r l and In ternalUser2 , 
which are inserted into the attribute u s e r s of the object L ib ra ry l . Similarly, 
the addition of two books (objects Bookl, Book2) and of a journal (object 
Jou rna l l ) to the library changes the attribute documents of L ibra ry l , which 
eventually stores these three objects (time points 3, 4, 5). At time 6, a doc­
ument is borrowed by a user. This requires the creation of a new object of 
type Loan, Loanl, which is inserted into L i b r a r y l . loans . The attributes use r 
and document of Loanl are found to reference the objects In t e rna lUse r l and 
Jou rna l l respectively. In turn, J o u r n a l l . loan is a reference to Loanl, which 
is the only object inside I n t e r n a l U s e r l . l o a n s . Returning the document 
J o u r n a l l at time 7 determines the removal of Loanl from Libra ry l . loans , 
I n t e r n a l U s e r l . loans and JournalLloain . To achieve this, a temporary 
Loan object (Loan2) is created which references I n t e r n a l U s e r l and Jou rna l l 
through its attributes user and document. It is compared with the objects 
in L i b r a r y l . l o a n s to identify which Loan object to remove (resulting in 
Loanl). Execution of the command isHolding causes the creation of another 
temporary object of type Loan, LoanS, which also references In t e rna lUse r l 
and Jou rna l l . The presence of an identical object inside L i b r a r y l . l o a n s is 
checked during the execution of the requested operation. 

Fig. 4.13 shows the object diagram that can be derived from the execution 
trace in Fig. 4,12. Arcs in this diagram are decorated with an indication of 
the time interval in which the related associations exist (from creation to 
deletion). Thus, L ib ra ry l is associated with its documents (Bookl, Book2 
and Journa l l ) and to its users ( In t e rna lUse r l and InternalUser2) for 
the whole duration of the program (until time 8), starting from the creation 
time of each object (3, 4, 5 for the documents and 1, 2 for the users). The 
command borrowDoc, issued at time 6, gives rise to the creation of Loanl, 
connected to I n t e r n a l U s e r l and J o u r n a l l , and inserted into the container 
loans of L ib ra ry l . Since at the next time point (7) such a loan is deleted, 
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|Time 

0 
1 
2 

3 

4 

5 

6 

7 

8 

Command 
<static init> 
addlntUser 
addlntUser 

addBook 

addBook 

addJournal 

borrowDoc 

returnDoc 

isHolding 

Allocations 
Libraryl 
InternalUserl 
InternalUser2 

Bookl 

Book2 

Journail 

Loanl 

Loan2 

LocinS 

Object attributes 

Libraryl.users={lnternalUserl} 
Libraryl.users={lnternalUserl, 

InternalUser2} 
Libraryl.users={lnternalUser1, i 

InternalUser2} 
Libraryl.documents={Bookl} 
Libraryl.users={InternalUserl, 

InternalUser2} 
LibraLryl.documents={Bookl, Book2} 
Libraryl.users={lnternalUserl, 

InternalUser2} 
Libraryl.documents={Bookl, Book2, 

Journal1} 
Libraryl.users={lnternalUser1, 

InternalUser2} 
Libraryl.documents={Bookl, Book2, 

Journal1} 
Libraryl.loans={Loanl} 
Loanl.user=InternalUserl 
Loanl.document=Journal1 
InternalUserl. loans={Loaiil} 
Journal 1. lo2Ln=Loanl 

Libraryl.users={lnternalUserl, 
InternalUser2} 

Libraryl.documents={Bookl, Book2, i 
Journal1} 

Libraryl.loans={} 
InternalUserl.loans={} 
J ournal1.1oan=nul1 
Loan2.user=InternalUser1 
Loan2.document=Journal1 

Libraryl.users={lnternalUser1, 
InternalUser2} 

Libraryl.documents={Bookl, Book2, 
Journal1} 

Libraryl.loans={} 
InternalUserl.loans={} 
Journal1.loan=null 
Loan3.user=InternalUser1 
LoanS.document=Journal1 

Fig. 4.12. Execution trace obtained by running the eLib program. 
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1 . ^ , 1 loans ,J lntFirnalHRC»r1 I 

loan^i-oani k- H,,, ^ 

Fig. 4.13. Dynamic object diagram obtained from the execution trace of the eLih 
program. 

the Hnks connected to Loanl cease to exist at time 7, their Hfe interval being 
[6-7]. At time 7, the temporary object Loan2 is created to achieve the deletion 
of the previous loan. Such an object is connected to In t e rna lUse r l and 
Journal 1, but the related associations do not exist any longer when the object 
is dismissed. Thus, their hfe span is limited to the execution of the command 
returnDoc ([7-7]). Similarly, the object Loan3 is created at time 8 to verify the 
presence of a loan among those in the library. Being a temporary object, its life 
ends with the termination of the command. Correspondingly, the associations 
outgoing from LoanS have a time interval [8-8]. 

A comparison of the static object diagram (Fig. 4.11, right) with the dy­
namic object diagram (Fig. 4.13) reveals the complementary nature of the in­
formation they convey. The static diagram represents all possible associations 
and all possible objects that may be created at run time conservatively. On 
the contrary, the dynamic diagram is partial and represents only the objects 
and the associations created during a particular program execution. Thus, 
since class TechnicalReport is never instantiated in the chosen execution, 
the dynamic diagram does not contain any object for it, while the possibility 
of creating TechnicalReport objects is accounted for in the static diagram. 
The dynamic diagram provides more information about object multiplicity. 
Class Book is instantiated twice in the execution being considered, and cor­
respondingly, two objects are in the dynamic diagram (Bookl, Book2). On 
the other side, the number of times a given allocation is executed at run time 
is unknown during a static analysis, so that no multiplicity information is 
included in the static diagram. Moreover, the dynamic diagram provides the 
time intervals for the associations depicted in it. This allows distinguishing, 
for example, more stable relationships, such as those between L ib ra ry l and 
its documents or users, from temporary relationships, such as those between 
LocLn2, LoanS and the referenced document/user. In general, in the static 
diagram, times of creation and removal of relationships and objects are not 
apparent, in that all possible relationships at any possible execution time are 
shown. On the contrary, the dynamic diagram shows the exact time at which 
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relationships (objects) are created, changed, or deleted. On the other hand, 
this is known only for specific program executions. 

4.6 Related Work 

Information about class instances is collected at run-time by research proto­
types, such as those described in [42, 62, 67, 97]. In these works, creation of 
objects and inter-object message exchange are captured by tracing the exe­
cution of a program under given scenarios. A novel approach for the dynamic 
analysis of object creation and of the inter-object relationships is described 
in [29]. It exploits the notion of aspect, introduced by Aspect Oriented Pro­
gramming [40], and its ability to intercept a well defined execution point (join 
point), at which information about objects can be accessed and traced. 

The OFG propagation exploited for static object diagram construction is 
based on the type inference technique for points to analysis [3]. More details on 
this and other related works are provided in Chapter 2, in the context of OFG 
construction and flow propagation. A major diflFerence with the works in the 
type inference literature consists of the object sensitive variant (see Fig. 4.4), 
which requires an incremental OFG construction. Edges in the OFG depend 
on the objects referenced by program locations (object sensitivity), which 
are in turn the outcome of flow propagation on the OFG. OFG construction 
followed by flow propagation are repeatedly performed to produce the final, 
object sensitive, OFG of the program. Similar problems are faced in [57], 
where an object sensitive variant of [3] is investigated. 

Experimental results obtained by applying the presented approach to a 
case study are provided in [89], where the information conveyed by class di­
agrams, static object diagrams and dynamic object diagrams is considered. 
Results indicate that the object diagram provides additional information with 
respect to the class diagram, being focused on the way a program actually uses 
the objects that instantiate the declared classes. Moreover, static and dynamic 
views of the objects capture complementary information. The former covers 
all statically admissible inter-object relationships, while the latter provides 
accurate multiplicity data for specific scenarios. Two novel object-oriented 
testing criteria, Object coverage and Inter-object relationship coverage are de­
rived in [89] from the comparison of the static object diagram and of the 
diagrams associated to the execution of test cases. The number of test cases 
should be enough as to cover all object creations or inter-object relationships 
displayed in the static object diagram. 



Interaction Diagrams 

This chapter is focused on the extraction of a representation of the interac­
tions that occur among the objects that compose an Object Oriented system. 
A static analysis of the source code provides a conservative superset of all pos­
sible interactions, while a dynamic analysis can be used to trace the behavior 
of the program during a given execution. 

In Object Oriented programming, the overall functionality of an applica­
tion emerges from the interactions among the communicating objects it in­
stantiates. There is no single place where the instructions for a given system's 
functionality are concentrated. On the contrary, each object gives a small con­
tribution to a larger picture, possibly delegating part of the computation to 
other objects. Thus, understanding the behavior emerging from the message 
exchange implemented in an Object Oriented system can be a difficult task. 
Interaction diagrams help programmers in such a task by offering a visual 
language for the display of the control transfers among objects. 

Interaction diagrams can be obtained from the source code by augmenting 
the object diagram with information about method invocations. The sequence 
of method dispatches is considered and their ordering is represented in the two 
forms of the interaction diagrams: either in collaboration diagrams, which em-
phaisize the message flows over the structural organization of the objects, or in 
sequence diagrams, which emphasize the temporal ordering. Recovery of these 
diagrams from the source code can be achieved by defining a proper analysis 
on the OFG and exploiting its outcome to statically resolve the method in­
vocations. Dynamic recovery of the interaction diagrams can be obtained by 
running an instrumented version of the program and collecting the dynamic 
interactions among the objects from the execution trace. 

For statically determined diagrams, a numbering algorithm, aimed at or­
dering events temporally, is also described in this chapter. It is used to attach 
time stamps to method calls, thus making the diagrams more informative. In 
order for the approach to scale to large systems, it is complemented by an 
extension of the interaction diagram recovery algorithm to handle incomplete 
systems, and by a focusing technique that can be used to locate and visualize 
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only the interactions of interest. Correspondingly, focused numbering of the 
temporal events is also considered. 

The chapter is organized as follows: Section 5.1 gives an overview on the 
interaction diagrams. Section 5.2 presents the specialization of the general flow 
propagation algorithm that is used for the reverse engineering of the interac­
tion diagrams and some related problems, the first of which deals with the 
recovery of useful interaction diagrams in the presence of incomplete systems. 
Moreover, the usability problems of the resulting diagrams are also discussed. 
To make diagrams fit the cognitive abilities of humans, proper visualization 
techniques must be adopted. In particular, the possibility to focus on a com­
putation of interest is described in detail, together with a related numbering 
algorithm, for the temporal ordering of the involved events. Interaction di­
agrams can be recovered at run time, for specific program's executions, as 
described in Section 5.3. Examples of interaction diagrams obtained for the 
eLib system are provided in Section 5.4, while a discussion of the related works 
ends the chapter. 

5.1 Interaction Diagrams 

Interaction diagrams are used to model the dynamic aspects of an Object 
Oriented system [7]. While class diagrams are used to represent the static 
structure of the system, in terms of its classes and of the relationships among 
classes, interaction diagrams are focused on class instances (objects), work­
ing together to carry out some task. Their behavior (instead of their static 
structure) is represented as a sequence of messages that are exchanged among 
objects. The evolution over time of the method dispatches characterizes the 
overall behavior. 

As in the object diagram, the elements represented in the interaction di­
agrams are the objects created by a program. The main diff*erence between 
object diagram and interaction diagrams is that the former represents the 
structure of the object system, in terms of inter-object relationships, while 
the latter deals with the behavior of communicating objects, expressed in 
terms of the method invocations issued among the objects in the system. 

The interactions among objects can be modeled in two ways: by emphasiz­
ing the time ordering of the messages (sequence diagrams), or by emphasizing 
the sequencing of the messages in the context of the structural organization 
of the objects (collaboration diagrams). In the first case, a vertical time line is 
displayed and events are positioned on it to indicate their temporal ordering. 
In the latter case, the Dewey numbering system (incremented integer num­
bers separated by dots) is used to indicate that a given message triggers the 
exchange of a set of other nested messages. Thus, if 1 is the sequence num­
ber of the first message, 1.1 and 1.2 are respectively used for the first and 
second nested messages. Method calls prefixed by Dewey numbers label the 
inter-object relationships shown in a collaboration diagram. 



5.2 Interaction Diagram Recovery 91 

Reverse engineering of the interaction diagrams from the code can be con­
ducted either dynamically or statically. Dynamic extraction of the interactions 
among objects requires the availability of a full, executable system, which is 
run with some predefined input data. The statements issuing calls to methods 
are traced during the execution, with information for the unique identification 
of the source and target objects. The main disadvantages of this approach are 
that it does not apply to incomplete systems, but only to whole, executable 
ones, and that the resulting diagrams describe the system for a single execu­
tion with given input values. A static, conservative analysis of the code for 
the reverse engineering of the interaction diagrams addresses both problems. 
However, it may overestimate the set of admissible behaviors. This is why 
these two kinds of diagrams complement each other and it is desirable to have 
both of them during reverse engineering of a given Object Oriented system. 

5.2 Interaction Diagram Recovery 

The static recovery of the interactions among objects is done in two steps: first, 
the objects created by the program and accessible through program variables 
are inferred from the code. Then, each call to a method is resolved in terms 
of the possible source and target objects involved in the message exchange. 

(1) p 
(2) D 
(3) 
(4) 
(5) S 
(6) 
(7) 

where in (5) Cj 

::= D*S* 
::= a \ 

1 'rn(fi,...Jk) 
1 cs(/i , .- , / /=) 

::= X = new c(ai, ...,ajfe); ^en[a;] = {ci} 
1 X = y; 
1 [x =]y.m{ai,...,ak)', 

is the object identifier associated with this allocation site. 
gen[n] = 0 for all locations different from the left hand side x in (5) 
kill[n] = 0 for all locations 

Fig. 5.1. Flow propagation specialization to determine the set of objects allocated 
in the program that are (possibly) referenced by each program location. 

A static approximation of the objects created by a program and of their 
mutual relationships can be obtained by performing a flow propagation in­
side the OFG, as described in more detail in Chapter 4. For the reader's 
convenience, the rules for the generation of the related flow information are 
reported also in Fig. 5.1. Each object allocation point in the program gives 
rise to an object identifier Cj, where c is the object's class name. Propagation 
of such object identifiers along the program's data fiows (i.e., in the OFG) 
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allows associating each variable with the set of statically determined objects 
it may reference. 

The set of objects Ci extracted from a program approximates the set of 
objects the program may create at run time. The main source of approxima­
tion consists of their multiplicity: since it is impossible to determine statically 
the number of times a statement is executed, the actual multiplicity of each 
object Ci is unknown. 

During interaction diagram construction, source and target of method in­
vocations are resolved into a set of statically determined objects c .̂ An alter­
native would be associating them with the respective classes, instead of their 
instances. However, the first choice provides a better approximation than just 
using the class of the objects that are invocation sources or targets. In fact, 
in the resulting interaction diagrams, objects of a same class allocated at 
different program points are distinguished in the first case, while they are 
represented as a single element in the second case. Moreover, objects belong­
ing to a subclass of the declared class are assigned the exact type, as obtained 
from the allocation statement, while the analysis of method invocations at 
the class level does not allow distinguishing instances of the given class from 
instances of the subclasses. 

resolveCall(expr: 'psO')- CallPairs 
1 A ^ class (scope (expr)) 
2 f 4- method (scope (expr)) 
3 sources <- out[A.f.this] 
4 if p is a class attribute 
5 
6 
7 
8 
9 

targets 4- out[A.p] 
else 

targets <r- out[A.f.p] 
end if 
return (sources, targets) 

Fig. 5.2. Algorithm for the static resolution of a method call. 

Once the objects referenced by program locations are obtained by the flow 
analysis on the OFG, method calls can be resolved by means of the algorithm 
shown in Fig. 5.2. Given a statement containing a call expression of the form 
p . g O inside a method f of class A, the source objects and the target objects 
of the call are respectively those referenced by the t h i s pointer of the current 
method {out[A.i . th i s ] ) and by the location p {out[k.f .p] or out[A,p] in case 
p is a class attribute). 

More complex Java expressions involving method calls can be easily re­
duced to the case reported in Fig. 5.2. For example, if a chain of attribute 
accesses precedes the method call, as in p . q . g O , the invocation targets are 
obtained from the last involved attribute: out[B.q\, where B is the class of the 
attribute q accessed through p. When another method call precedes the one 
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to be solved, as in p . f O . g O , the related r e t u r n location can be used to 
determine the targets of the call: out[B.f . r e tu rn ] , where B is the class of the 
method f accessed through p. 

The procedure resolveCall given in Fig. 5.2 returns a pair of sets, sources 
and targets, containing the object identifiers that are statically determined 
as respectively possible source or target objects of the given invocation. The 
source and target objects returned by the procedure resolveCall will be con­
nected by a call relationship in the interaction diagrams. 

eLib example 

Let us consider the method addLocin from class Library (line 40). It con­
tains four method calls (lines 42, 43, 45, 46) that must be resolved before 
constructing the interaction diagrams. 

out= {Library 1} 

Loan.user 

out={Userl, IntamalUserl} 

Loan.document 

out={Bookl, TechniJalReport 1, Journal 1} 

Li brary .addLoan .doc 

out={Bookl, TechnicalReportl, Journal 1} 

Fig. 5.3. Portion of OFG used for call resolution. 

Fig. 5.3 shows the portion of OFG that contains the information re­
quired for the resolution of the four calls inside method addLoan. The ob­
ject L ibrary 1, allocated at line 348 and assigned to the static attribute l i b 
of class Main, is the object referenced by t h i s inside addLoan. The object 
Loanl, allocated inside borrowDocument at Une 60, is passed as the param­
eter loan to addLoan. The attribute u se r of class Loan is returned by the 
method getUser of class Loan and is assigned to the variable use r (line 42), 
a local variable of method addLoan. The set of objects possibly referenced by 
the attribute user of class Loan was determined in the previous chapter (see 
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Fig. 4.9). In Fig. 5.3 it is represented as the out set of node Loan.user. By 
propagating such values in the OFG, the out set of L ibrary .addLoan.user 
is computed. Similarly, the OFG edges that lead to Library.addLoan.doc 
(the local variable doc inside method addLoan) indicate that it references the 
objects stored inside the attribute document of class Loan. These were also 
determined in the previous chapter (see Fig. 4.9) and are reported as the out 
set of node Loan.document in Fig. 5.3. 

Line 

42 
43 
45 
46 

Call 

loan.getUserO 
locin. getDocument () 
user.addLoan(loan) 
doc. addLoan (locin) 

Sources 
Libraryl 
Library1 
Libraryl 
Libraryl 

Targets 
Locinl 

Loanl 
Userl, InternalUserl 
Bookl, TechnicalReportl, Journal1 

Table 5.1. Source and target objects in method calls issued inside method addLoan 
in class Library. 

The out sets reported in Fig. 5.3 can be used to resolve method calls, 
according to the algorithm in Fig. 5.2. The resulting sets of source and 
target objects are shown in Table 5.1. The source of the calls is the set 
of objects possibly referenced by t h i s in method addLoan, that is, the set 
ow^[Loan.addLoan.this] in Fig. 5.3. Targets are obtained similarly, as the 
out sets of the locations involved in the four calls (resp. loan , loan, u s e r , 
doc inside method addLoan). The content of these sets, shown in Fig. 5.3, is 
reported in Table 5.1 under the heading "Targets". 

Given the resolved method calls (sources and targets), it is straightforward 
to either build the sequence or the collaboration diagram. Figure 5.4 depicts 
both of them. The first call issued inside method addLoan is a call to method 
getUser and is made on the object Loanl (allocated at line 60). The sec­
ond call (getDocument) also has Loanl as its target. Then, method addLoan 
is invoked either on the object Userl , an object of class User allocated at 
hne 382, or on object I n t e rna lUse r l , an object of class In te rna lUser al­
located at line 390. The last call (still addLoan) has three possible target 
objects: Bookl, Technica lRepor t l , Jou rna l l (resp. allocated at lines 406, 
414, 422). The source object of all these calls is L ib ra ry l . 

In Fig. 5.4^ the associations between objects shown in the collaboration 
diagram at the bottom are those recovered during reverse engineering of the 
object diagram, as described in Chapter 4. 
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[ Library 1: Library | [ 

getUser 

getDocument 

InternalUsen: InternalUser 
User1:User 

BQOI<1 : BQOI< 

TechnicalReportI: TechnicalReport 
JournaH: Journal 

I Library 1: Libtary. 

InternalUserl: InternalUser 
Userl: User TechnicalReportI: TechnicalReport 

Fig. 5.4. Sequence (top) and collaboration (bottom) diagram built after call reso­
lution for method addLoan in class Library. 

5.2.1 Incomplete Systems 

In order to produce complete interaction diagrams, the algorithm described in 
the previous section requires that all allocation points are in the code under 
analysis. This means that the system under analysis comprises all the driver 
modules necessary to build all of the needed objects. However, in Object Ori­
ented programming it is very common to build only an incomplete system, 
consisting of a cohesive set of interacting classes that perform a given, well de­
fined task, and are expected to be reused in different contexts. In these cases it 
would be desirable to be able to derive the interaction diagrams even if not all 
object creations are in the code, to understand the behavior of the incomplete 
subsystem in isolation, independently of its usages in a given application. To 
achieve this, ail method invocations are taken into consideration and when 
the source or the target of a call are not associated with any recovered ob­
ject, although their classes are part of the system under analysis, a generic 
object is introduced. The result is an interaction diagram in which placehold­
ers (marked with an asterisk) for generic objects are present for objects not 
allocated inside the analyzed code. 

Resolution of method calls for incomplete systems is shown in Fig. 5.5. All 
calls in the program are considered in sequence. Results of flow analysis are 
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resolveAllCalls(prog: Program): CallEdges 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

callEdges <r- 0 
for each expr: 'p.g()' in 

(sources, targets) <-
if sources = 0 

sources ^ {A*} 
endif 
if targets = 0 

targets <- {B*} 
endif 

prog 
resolveCall(stmt) 

for each s in sources 
for each t in targets 

callEdges <-
end for 

end for 
end for 
return callEdges 

where A = class(scope(p)), B 

callEdges U {s,t)g 

= type(p) 

Fig. 5.5. Resolution of all method calls for incomplete systems. 

used to determine the source and target objects (invocation of procedure re-
solveCall). If one or both of the two sets are empty, a generic object associated 
to the declared class or interface is used instead (A* indicates a generic object 
of class/interface A or any derived/implementing class). In this way call edges 
are generated even when the object analysis algorithm fails to determine the 
object issuing or receiving a message. 

When an object ki allocated in the program portion under analysis is 
the source or target of a call, it cannot be excluded that another externally 
allocated object be an alternative source or target of the same call. Thus, A* 
must be always assumed implicitly as an alternative source or target, unless 
further information is available about the excluded code. Moreover, if the 
excluded code introduces data flows that alter the OFG, it is necessary to take 
them into account, in order for the result to remain conservative. An example 
of this situation is the presence of external container classes, discussed in 
detail in Chapter 2. The presence of a label A* indicates that no allocation 
point for the given object was found in the code, while Â  indicates that at 
least one allocation point was found, although other external allocations may 
also exist. 

When, in the presence of subclassing, the allocation point is part of the an­
alyzed code, the allocated object is assigned the exact type (e.g., if Al inherits 
from A and the allocation expression is new Al() the object will be identi­
fied accurately as Alj). On the contrary, when a generic object is introduced 
because the allocation point is missing, the actual type may be any derived 
class, and the recovered information is less precise than for objects allocated 
in the code (A* is used for the external allocation of objects of any subclass 
of A, including A itself). 
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eLib example . 

Let us consider the code of just the core classes of the eLib program (Ap­
pendix A), excluding the driver class Main reported in Appendix B. When 
method addLoan (line 40) from class Library is analyzed, the source object 
of the four calls it contains (lines 42, 43, 45, 46) is not known. Actually, no 
allocation of objects belonging to class Library is performed inside the code 
in Appendix A. While for the first two calls it is possible to determine the 
target object, which is Loanl, the Loan object allocated at line 60, this is not 
possible for the last two calls. No object of either classes User and Document 
is ever allocated in the code under analysis. Correspondingly, the set targets 
returned by the procedure resolveCall is empty for the calls at lines 45, 46. 

1 ijbra£y:!llihrary . | 1 Loan 1: Loan 1 

getUser 

getDocument 

addLoan 

addLoan 

1 User*: User ! 1 Document*: Document 1 

Fig. 5.6. Sequence (top) and collaboration (bottom) diagram for method addLoan 
in class Library. The analyzed code excludes the driver class Main. 

Application of the rules in Fig. 5.5 leads to the introduction of a generic 
object Library* as the source of all four calls. Moreover, the generic objects 
User* and Document* are introduced for the calls at lines 45, 46. The resulting 
sequence and collaboration diagrams are shown in Fig. 5.6. By contrasting 
them with those in Fig. 5.4, the approximations introduced by generic objects 
become apparent. Only superclasses (e.g., User and Document) of actually 
allocated classes are specified with the generic objects, and no reference to 
specific allocation statements can be given (e.g., in Fig. 5.4 Userl is the object 
allocated at line 382, while in Fig. 5.6 allocation of User* is external and 
unknown). 
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5.2.2 Focusing 

The interaction diagrams in Fig. 5.4 and 5.6 represent the message ex­
change among objects triggered by the execution of the method addLoan 
inside the class Library. In other words, the view focuses on the interactions 
occurring when a particular computation (i.e., method of interest, such as 
Library. addLoan) is performed. This corresponds to the natural approach of 
drawing the interaction diagrams in forward engineering. In fact, it usually 
makes no sense to draw just one huge diagram for the whole functioning of 
the system. It is preferable to split it up according to the most important 
subcomputations (i.e., the most important methods for the selected function­
ality). This is the key to handling the complexity of large systems. 

When interaction diagrams are reverse engineered, the overall plot con­
taining all objects and all message exchanges may be unusable, because its 
size may exceed the cognitive abilities of humans even for relatively small 
systems. However, it is possible to focus the view on specific methods, thus 
following the natural approach to the construction of these diagrams. This 
is achieved by restricting the view to a subset of the calls issued in the pro­
gram: those belonging to a method of choice. The corresponding modification 
of the recovery algorithm is as follows. First, the procedure resolveAllCalls in 
Fig 5.5, which returns all call edges in the whole interaction diagram, is run. 
Then, only the nodes reachable in the call graph (the graph representing the 
call relationship between pairs of methods) from a method of choice are taken 
into account. The set of call edges returned by procedure resolveAllCalls is 
thus restricted to the methods in a selected portion of the call graph. 

If this is not enough to produce interaction diagrams of manageable size, 
the second option available to the user is cutting a part of the system and 
analyzing an incomplete system, in such a way that it still includes all the key 
classes involved in the computation of interest. As discussed in the previous 
section, the introduction of generic objects allows analyzing incomplete sys­
tems as well. To summarize, applicability of the proposed approach to large 
systems can be achieved by filtering the relevant information in two ways: 

1. Only the calls issued directly or indirectly from a method of interest are 
resolved. 

2. An incomplete system, including only the interesting classes, is analyzed. 

Method calls in a focused collaboration diagram are numbered according 
to the Dewey notation. Such numbering is exploited also to draw the sequence 
diagrams, in that the temporal (vertical) ordering is induced by them. It is 
possible to obtain the proper numbering of method calls by means of the 
numbering algorithms shown in Fig. 5.7, 5.8. 

The first step, described in Fig. 5.7, consists of numbering each call state­
ment in the program. The first time the procedure numberCalls is invoked, 
it has a method body (block of statements) as first and 1 as the second pa­
rameter. An incremental number is associated to each call statement (line 3) 
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numberCalls(stmtBlock: Statements, num: Integer): Integer 
1 
2 
3 
4 
5 

1 6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

for each stmt in stmtBlock 
if stmt = ' p . g O ' 

caIlNum[stmt] i- num 
num ^ num + 1 

endif 
if stmt = ' i f (expr) bkl e l se bk2' 

nl <r- numberCalls(bkl, num) 
n2 <r- numberCalls(bk2, num) 
num <— max(nl, n2) 

endif 
if stmt = 'while (expr) bk' 

num i- numberCalls(bk, num) 
endif 

endfor 
return num 

Fig. 5.7. Numbering of method calls. 

and each nested block of statements is handled similarly to the main block, 
by recurring inside it (at line 11 only the case of a while loop containing a 
nested block is represented for simplicity). Statements with more than one 
nested block of statements, such as an i f statement with both then and else 
part, require a special treatment, in that the value of the number to use for 
the first statement following the i f must be the maximum between the values 
generated inside the two nested blocks of statements (then and e l s e part of 
the i f ) . 

. example 
c l a s s A { 

void f 0 { 

i f (c) { 
o l . m l O ; 
o2.m2(); 

} e l s e { 
o3.m3(); 

} 
o4.m4(); 

5 
6 
5 
7 

A.f -> B l . m l 
A.f -^ B2.in2 
A.f -> B3.m3 
A.f -> B4.m4 

} 

Assuming num equal to 5 when the i f statement above (inside method f of 
class A) is encountered, the absolute numbers attached to the calls to Bl.ml 
and B2.m2 are respectively 5 and 6, the absolute number attached to B3.in3 is 
5, and the next value of num, used for B4.m4, is 7 (assuming that variables o l , 
o2, o3 , o4 belong respectively to classes Bl , B2, B3, B4). The alternative 
between the two branches of the i f is indicated by giving them a same initial 
numbering (5, for both A.f —> Bl.ml and A.f -^ B3.m3). 
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numberFocusedCalls(stmtBlock: Statements, 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

curNum: DeweyNumber) 
for each stmt in stmtBiock 

if stmt = ' p . g O ' 
deweyNum •<- curNum.callNum[stmt] 
printNumberedCalI(deweyNum, stmt) 
if g is not on the callStack 

push(g, callStack) 
numberFocusedCalls(body[g], deweyNum) 
pop{g, callStack) 

endif 
endif 
if stmt = ' i f (expr) bkl e l se bk2' 

numberFocusedCalls(bkl, curNum) 
numberFocusedCalls(bk2, curNum) 

endif 
if stmt = * while (expr) bk' 

numberFocusedCalls(bk, curNum) 
endif 

endfor 

Fig. 5.8. Numbering of method calls focused on a method. 

The second step in the generation of the Dewey numbers for the collab­
oration diagram, summarized in Fig. 5.8, is run under the assumption that 
the view is focused on some method. Correspondingly, numberFocusedCalls is 
invoked with the body of the selected method as the first parameter, and an 
empty Dewey number as the second parameter. When a call is encountered, 
the related Dewey number is obtained by concatenating the current Dewey 
number and the number of the call, separating them with a dot (line 3). The 
new Dewey number generated for the call is passed to a recursive invocation 
of numberFocusedCalls, executed on the body of the called method (Hne 7). 
Computation of the Dewey numbers inside the called method is not activated 
in case recursion is detected (check at line 5). For the other statements (lines 
11 through 17), the procedure just enters each nested block of statements, 
where it is reapplied. 

When multiple objects, belonging to different classes, are determined as 
the targets of a call (e.g., InternalUserl and Userl for the call to addLoan 
in Fig. 5.4), the content of the invoked method may differ from object to 
object (method overriding). The procedure to compute the Dewey numbers 
{numberFocusedCalls in Fig. 5.8) is recursively called (line 7) for each different 
implementation (body) of the overridden method, thus including all of the 
possibile alternatives. 
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eLib example . 

Let us consider the direct and indirect method calls issued from inside 
the body of method returnDocument, class Library, line 66, shown in Ta­
ble 5.2. The first called method, isOut, in turn invokes method i sAva i l ab le 
from class Document. Method getBorrower (second call in returnDocument) 
invokes getUser from class Loan. Finally, L ib ra ry . removeLoan, the last in­
vocation inside returnDocument, triggers the execution of four methods, re­
ported at the bottom-right of Table 5.2. These do not perform any further 
method invocation. 

Library.returnDocument: 
Line 
68 
69 
71 

Num Called method 
Document.isOut 
Document.getBorrower 
Library.removeLoan 

Document.isOut: 
Line| Num | Called method 
180 1 Document . isAvai lable 

Document.getBorrower: 
Line 
187 

Num 
1 

Called method 
Loan.getUser 

Library.removeLoan: 
Line 

50 
51 
53 
54 

Num 
1 
2 
3 
4 

Called method 
Loan.getUser 
Loan.getDocument 
User.removeLoan 
Document.removeLoan 

Table 5.2. Transitive method calls issued from method returnDocument in class 
Library. Column Num reports their numbering. 

Method calls are numbered in Table 5.2 (column Num) according to 
the rules given in Fig. 5.7. Let us consider a collaboration diagram focused 
on method Library.returnDocument. Computation of the Dewey numbers 
(see Fig. 5.8) starts with the body of method Library.returnDocument 
and an empty Dewey value. The three calls issued inside this method are 
thus numbered 1, 2, 3. Procedure numberFocusedCalls is then reapplied to 
the body of Document. isOut, with a current Dewey value equal to 1. The 
call to i sAva i l ab l e issued inside Document. isOut is correspondingly num­
bered 1.1. Similarly, the call to Loan.getUser inside Document.getBorrower 
is numbered 2.1. Another call to the same method, issued from method 
L ib ra ry . removeLoan, receives a different Dewey number: 3.1. The final 
Dewey numbers produced for the collaboration diagram focused on r e t u r n -
Document are displayed in Fig. 5.9. 
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3.1:getUser 
3.2: getDocument 

Loan2: Loan N -

3.3: removeLoan / 

3: removeLoan 

l:isOut 
2: getBorrower 

2.1:getUser\ 3.4: removeLoan 

InternalUserl: IntemalUser 

User1: User 
Book1: Book 

TechnicalReportI: TechnicalReport 

jQurnall: Journal 

LI: isAvailable 

Fig. 5.9. Collaboration diagram focused on method returnDocument of class 
Library. 

5.3 Dynamic Analysis 

A second approach to the construction of the interaction diagrams for a given 
application relies on dynamic analysis, i.e., on the analysis of the run-time 
behavior. Interaction diagrams can be produced out of the execution traces 
obtained by executing the application on a set of test cases. The basic infor­
mation that must be available from the execution traces to support the con­
struction of the interaction diagrams consists of an identifier of the current 
object and of the object on which each method call is issued. More specifically, 
in order to instrument a program for interaction diagram construction, the 
following additions are required: 

• Classes are augmented with an object identifier, computed within the ex­
ecution of the class constructors. 

• Upon method call, the identifier of the current and of the target object are 
added to the execution trace. Moreover, the name of the current method 
is also traced. 

• Time stamps associated with method calls are produced and traced. 

At this point, a straightforward postprocessing of the execution trace pro­
vides an interaction diagram for each test case executed. Each time a method 
call is found in the trace, a call relationship is drawn in the interaction dia­
gram between the objects uniquely identified in the trace. Knowledge of the 
current method issuing the call is used to determine the current activation in 
the sequence diagram (see below). The ordering of the call events is induced 
by the time stamps. 
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Differently from the static analysis, the dynamic analysis produces a set 
of interaction diagrams, one for each test case. Even if each diagram usually 
represents a different interaction pattern, it is not ensured that all possible 
interactions are considered. This depends on the quality of the test cases. On 
the contrary, all possible behaviors are represented in the statically recovered 
diagrams. 

eLib example 

Let us consider two test cases for the eLib program^: 

T C I A book previously borrowed by a normal (not an internal) user of the 
library is returned, and the loan is closed. 

TC2 An attempt is made to return a book which is already available for loan. 

Both test cases result in the execution of the method returnDocument 
(line 66) from class Library, with a different parameter (resp., a borrowed 
and an available book). 

Time 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Time 
1 
2 

Cur. obj 
Libraryl 
Bookl 
Libraryl 
Bookl 
Libraryl 
Libraryl 
Libraryl 
Libraryl 
Libraryl 

Cur. obj 
Libraryl 
Bookl 

Cur. method 
returnDocument 
isOut 
returnDocument 
getBorrower 
returnDocument 
removeLoan 
removeLoan 
removeLoan 
removeLoan 

Cur. method 
returnDocument 
isOut 

Target obj 
Bookl 
Bookl 
Bookl 
Loanl 
Libraryl 
Loan2 
Loan2 
Userl 
Bookl 

Target obj 
Bookl 
Bookl 

Called method 1 
isOut 
isAvailable 
getBorrower 
getUser 
removeLoan 
getUser 
getDocument 
removeLoan 
removeLoan 

Called method 
isOut 
isAvailable 

Table 5.3. Execution traces for test cases TCI (top) and TC2 (bottom). 

The related execution traces are shown in Table 5.3. Fig. 5.10 displays 
the sequence diagrams that are obtained from the execution traces. Method 
activations are shown on the vertical time lines as blank vertical boxes. Such 
information can be easily derived from the execution traces, since the name 
of the current method is also traced when a call is issued. Thus, at time 
5 (TCI) a new method activation is started on the time line of the object 
L ib ra ry l because of the call to removeLoan, which has a target object equal 

^ Ad hoc drivers must be defined for them. In particular, the driver class Main in 
Appendix B is not compatible with TC2. 
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Libraryl: Library BookiiBook LoaniiLoan. | | Loan2: Loan User1: User 

TCI: returnDocument called on a borrowed book 

Libraryl: Library lBoQk1:Book LoanliLoan Loan2: Loan 

isOut 

ILF isAvailable 

User1: User 

TC2: returnDocument called on an available book 

Fig. 5.10. Sequence diagrams for method Library.returnDocument obtained by 
dynamic analysis, with test cases TCI (top) and TC2 (bottom). 

to the current object. Since successive calls are made with Libraryl as the 
current object and removeLoan as the current method, they depart from the 
nested activation in the time line of Libraryl. Similarly, a nested activation 
is created for the execution of i sAvai lable inside isOut at time 2 on object 
Bookl. 

The same method invocations are represented in the dynamic sequence 
diagram in Fig. 5.10 (top) and in the static cohaboration diagram in Fig. 5.9. 
However, the partial nature of the dynamic analysis is apparent from the 
comparison of the sequence diagram at the bottom of Fig. 5.10 and the static 
collaboration diagram in Fig. 5.9. In fact, only two of all possible interactions 
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are exercised in test case TC2, while all of them are conservatively shown in 
Fig. 5.9. 

Another aspect of the partial information provided by the dynamic dia­
grams is the type of the objects issuing or receiving a call. In Fig. 5.10 it 
seems that the class of the object receiving the calls issued at times 1, 2, 
3, 9 is Book and the class of the object receiving the call issued at time 8 
is User. On the contrary, inspection of the statically recovered collaboration 
diagram in Fig. 5.9, which accounts for all statically possible objects involved 
in each call, reveals that other object types can be the targets of these calls 
(resp. TechnicalReport and Journal for the calls issued at 1, 2, 3, 9, and 
In te rna lUser for the call issued at 8). Additional test cases would be nec­
essary to cover also these possibilities, while a static analysis conservatively 
reports all of them. 

Where dynamic interaction diagrams are more precise than static dia­
grams is in object identification. In Fig. 5.10, the target of the calls i sOut , 
getBorrower, removeLoan is a same object, Bookl, of class Book. This means 
that exactly the same object receives these three calls. On the contrary, iden­
tity of the target of these three calls, numbered 1, 2 and 3.4 in Fig. 5.9, is not 
precisely defined in the case of a statically recovered diagram. The allocation 
point for the three alternative target objects is known exactly (line 406 for 
Bookl, line 414 for TechnicalReport l , line 422 for Jou rna l l ) . However, such 
allocation points may be executed repeatedly (actually, they are, since they 
belong to methods indirectly called inside the loop at line 521 in the main). 
Since it is not possible to distinguish two instances made during different loop 
iterations by means of a static analysis, the source and target objects in static 
diagrams such as that in Fig. 5.9 account for all objects allocated by the same 
allocation statement. On the contrary, a dynamic analysis allows distinguish­
ing among them, and in a dynamic diagram two call relationships have the 
same source or the same target object if and only if exactly the same object 
issues or receives the calls. In the presence of dynamic binding, the knowledge 
of the exact object identity obtained through the dynamic analysis allows for 
a smaller, though possibly incomplete, set of potentially invoked polymorphic 
variants of the same method. 

5.3.1 Discussion 

As with the object diagram, static and dynamic extraction of the interaction 
diagrams provide different and complementary information. In static interac­
tion diagrams, all possible method calls among all possible objects created 
in the program are represented. Actually, some of them may never occur in 
any program execution, due to the presence of infeasible paths that cannot 
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(in general) be identified statically. However, the result is conservative. There 
does not exist any interaction among objects that is not represented in a 
statically recovered interaction diagram. Moreover, objects involved in thfe in­
teractions are necessarily of one of the classes reported in the static diagrams, 
and cannot be of any other class. 

The main limitation of the statically recovered interaction diagrams is re­
lated to the identity of the objects represented in the diagrams. When two 
arcs depart from a same object or enter a same object in a static interaction 
diagram, it cannot be ensured that the same object will actually issue or re­
ceive the calls associated with such arcs. In fact, object identity is given by the 
allocation statement in the program, but such a statement can be in general 
executed multiple times, giving rise to different objects that are represented 
as a single element in a static interaction diagram. On the contrary, the iden­
tity of the objects represented in dynamic interaction diagrams is based on 
a unique identifier that is generated and traced at run time for each newly 
created object. Thus, a precise object identification is possible, and corre­
spondingly the presence of call arcs departing from or entering into the same 
object indicates that exactly this object is involved in the interaction. 

On the other side, the main limitation of the dynamic diagrams is related 
to the quality of the test cases used to produce them. It may happen that not 
all possible interactions are exercised by the available test cases, or that not 
all possible type combinations are tried. In order to increase the amount of 
information carried by the dynamic views, it is possible to measure the level 
of coverage achieved with respect to the corresponding static diagram. Thus, 
a test case selection criterion may be defined as follows: if all object types and 
all possible interactions in the static diagram are covered by the available test 
cases, the set of dynamic diagrams obtained from the execution traces can be 
considered satisfactory. 

From the point of view of the usability of the diagrams, static and dynamic 
views have contrasting properties. A static diagram concentrates all the in­
formation about the behavior of a method in a single place, the interaction 
diagram focused on the given method, while several dynamic diagrams may 
be necessary to cover all relevant interactions associated to a given method. 
This indicates a higher usability of the static diagrams, since just one diagram 
per method must be inspected. On the other side, static diagrams tend to be 
larger than dynamic diagrams, in that the latter account for a specific, Umited 
execution scenario, while the former represent all possibilities. 

5.4 The eLib Program 

The full, static interaction diagram for the eLib program (Appendix A and B), 
obtained by considering all interactions among objects possibly triggered by 
the main control loop (line 527), contains a number of nodes, arcs and labels 
largely beyond the cognitive capabilities of a human being, mainly because 
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of the high number of edges and of the very high number of labels (more 
than 200) on the edges (each edge label represents a method call). It should 
be recognized that this happens for a relatively small application such as 
eLib. In larger, more realistic, programs the problem is exacerbated. Conse­
quently, usage of the focusing technique described in Section 5.2.2 appears to 
be mandatory for any program under analysis. 

When focused interaction diagrams are taken into consideration, their size 
is largely reduced. If focused diagrams are produced for the eLib program, 
the typical number of edges is between 5 and 10, while labels are typically 
in the range 5-20. Thus, focusing seems to be a very effective technique to 
make the information reverse engineered from the code useful and usable. 
Interaction diagrams focused on selected methods restrict the scope of the 
program comprehension effort to a given computation and provide an amount 
of data that can be managed by a human being. Overall, they represent a 
good trade-off between providing detailed information and considering a single 
functionality at a time. 

1: numberOfLoan: 

4.3: addLoan 

Libraryj: Library 

4.1: getUsel 
4.2: getDocurh^t 

LoanliLoan 

InternalUserl: InternalUser 
Userl: User 

4: addLoan 

2: isAvailable 
3: authorizedLoan 

4.4: addLoan 

jQurnah: Journal 
BoQkl: Book 

TechnicalReportJ: TechnicalReport 

3.1: authorizedUser 

Fig. 5.11. Collaboration diagram focused on method borrowDocument of class 
Library. 

Fig. 5.11 shows the collaboration diagram obtained by focusing on the 
method borrowDocument of class Library. The interactions occurring among 
the objects to reahze the library functionality of document loan are pretty 
clear from the diagram. First, the number of loans held by the user who intends 
to borrow a document is checked (call to number Of Loans), and if it exceeds 
a given threshold the loan is negated. Then, availability of the selected docu­
ment is verified (call to i sAva i lab le ) . A third check is about the authoriza­
tion to borrow the chosen document. The method authorizedLoan is called 
on the given document, which may belong to class Book, TechnicalReport 
or Journal . In the first two cases, method authorizedLoan return a fixed 
value (resp. t r u e and f a l s e ) . In the last case, authorization depends on the 
user category. Thus, the value returned by authorizedLoan is obtained by 
invoking the method authorizedUser on the borrowing user. This method re-
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turns t r u e for internal users, who have more privileges than the normal user, 
while it returns f a l s e for the other users. In the diagram, it can be observed 
that authorizedLoan is numbered 3 and authorizedUser is numbered 3.1. 
The latter is a nested invocation occurring only when the target object of 
authorizedLoan is of type Journal . 

If all checks give positive answers, the document can be borrowed. This 
is achieved by calling the method addLoan (call number 4), after creating 
a new Loan object (Loanl). In turn, this call triggers the execution of four 
nested methods. First of all, user and document are accessed from the Loan 
object Loanl (calls 4.1 and 4.2). Then, method addLoan is invoked on these 
two objects of type User and Document (calls 4.3 and 4.4). In this way, a 
bidirectional association is created between Loan object and User object, and 
between Loan object and Document object. 

Bookj: Book 

TechnicalRepQrtl: TechnicalReport 
Jpumall: Journal 

Fig. 5.12. Sequence diagram focused on method returnDocument of class Library. 

Fig. 5.12 shows the sequence diagram focused on the method returnDoc­
ument of class Library. It clarifies the message exchange that occurs when 
a document is returned to the library. First of all, a check is made to see if 
the document is actually out (call number 1, isOut). If this is not the case, 
nothing has to be done. A nested method execution is triggered by isOut, 
which resorts to i sAva i l ab le to produce the answer. If the document is out, 
its current borrower is obtained by requesting it via the document (call to 
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getBorrower, number 2). In turn, the Document object redirects the request of 
the borrower to the Loan object associated to it (call 2.1, getUser). It should 
be noted that the involved Loan object is Loeinl, i.e., the instance allocated at 
line 60. A new, temporary Loan object (Loan2, allocated at Hne 70), is then 
created and passed to removeLoan (call number 3) as a parameter. Inside 
removeLoan (nested activation in Fig. 5.12) user and document associated 
with the temporary Loan object are obtained (calls 3.1 and 3.2), and a call to 
method removeLoan on both of them (calls number 3.3 and 3.4) deletes the 
associations of these two objects toward the Loan object being removed. In 
this way, not only the Loan object is removed from the list of current loans 
held by the Library , but the inverse associations from User and Document to 
Loan are also updated. The resulting state of the library is thus consistent. 

Class Library provides methods to print information about stored data. 
Two examples of methods that can be invoked for such a purpose are 
pr in tAl lLoans and pr in tUser Inf o. Their interaction diagrams are displayed 
in Fig. 5.13 and 5.14. 

Libraryj: Library 

1 *[i.hasNext()]: print 

Loaril: Loan 
LhgetCode 

1.2: getName 

InternalUserl: InternalUser 
User1; User 

L3:getCocle 
1.4: getTitle 

BookJ: BQQK 
TechnicalReportl: TechnicalReport 

jQurnaH: Journal 

Fig. 5.13. Collaboration diagram focused on method printAllLoans of class 
Library. 

The first and only method execution invoked inside method p r i n t A l l ­
Loans (from class Library) is on object Loanl. Such an invocation, numbered 
1 in Fig. 5.13, is iterated as long as the condition reported in square brackets 
before the method name (p r in t ) is true. This condition requires that method 
hasNext, called on the iterator i running over all loans in the library, returns 
t r u e . Thus, pr in tAl lLoans delegates the print functionality to the Loan ob­
jects stored in the library inside an iteration. In turn, each Loan object can 
print complete loan information by requesting some of the data to the User 
and Document objects associated with it. This is the reason for the nested 
calls 1.1, 1.2 (toward objects I n t e r n a l U s e r l or Userl) and 1.3, 1.4 (toward 
objects Bookl, Technica lRepor t l , Jou rna l l ) . 

This example highlights the usefulness of showing conditions in square 
brackets. The existence of an iteration over all loans in the library can be 
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grasped immediately from the collaboration diagram, due to the indication of 
a loop (asterisk before the call to p r i n t ) and of the loop condition (in square 
brackets). While for larger diagrams the explicit indication of all conditions 
in square brackets may make them unreadable, because of an excessive label 
size, for small or medium size diagrams it may be extremely useful to include 
them in the arc labels. They provide important hints on the behavior of the 
method under analysis. 

Libraryl: Library 
InternalUserl: InternalUser 

User1: User 

BookJ: Book 

TechnicalReportI: TechnicalReport 

JoumaH: JoMrnal 

1: printlnfo 

1.6 *[i.hasNext()]: getCode 

1.1: getCode 

1.2: getName 

1.3: get Address 

1.4: getPhone 

1.5 *[i.hasNext()]: getDocument 

1.7*[i.hasNext()]:getTitle 
-• 
-D 

Fig. 5.14. Sequence diagram focused on method printUserlnfoCUser user) of 
class Library. 

The method p r in tUse r ln fo from class Library (see Fig. 5.14) has a 
parameter of type User, referencing a User object. The printing of infor­
mation about this library user is completely delegated to the User object. 
Thus, p r in tUse r ln fo contains just a method call, numbered 1, that trans­
fers the control of the execution to method p r i n t l n f o of class User. Inside 
this method, several data are obtained on the current object, by activating 
nested method invocations (numbered 1.1, 1.2, 1.3, 1.4). Then, the sequence 
of loans held by the given user are considered iteratively. For each of them, 
the borrowed document is requested (call to getDocument, number 1.5). The 
identifier and title of such a document are then accessed, by means of meth­
ods getCode (number 1.6) and g e t T i t l e (number 1.7). These further calls 
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are still inside the same iteration. Retrieved information about the borrowed 
documents is printed to the standard output. 

The sequence diagram depicted in Fig. 5.14 exploits the following results 
of flow propagation in the OFG: 

• ow^[User. loans] == {Loanl} 
• ow^[LocLn.document] = {Bookl, TechnicalReportl, Journall} 

Such results are conservative, but inaccurate in two respects: different 
loans should be associated with different kinds of users and no document of 
kind TechnicalReport should be ever present in a loan. In fact, documents 
of type Journal can be borrowed only by internal users (see check at line 59). 
Consequently, one would expect that User. loans and In t e rna lUse r . loans 
reference two different sets of objects, where only the second contains loans of 
Journals . On the contrary, only one node. User . loans , is in the OFG, and 
In te rna lUser just inherits the value of attribute loans from its superclass. 
On the other side, the authorization of a given User to borrow a document 
depends on the outcome of the call at line 59, to method authorizedLoan. A 
static analysis of the source code can hardly distinguish among the possible 
outcomes of this call, depending on the actual type of the target object and 
of the parameter. Similarly, the impossibility of creating a new loan when 
the given document is of type TechnicalReport is also hard to determine 
from a static analysis. In fact, it still depends on the outcome of the call to 
authorizedLoan at line 59. 

The inaccuracies of the static analysis used to approximate the objects ref­
erenced by the attribute loans of class User and by the attribute document 
of class Loan have the following consequences for the sequence diagram in 
Fig. 5.14. The two calls to getCode and g e t T i t l e (numbered 1.6 and 1.7 resp.) 
have two objects as possible sources (namely, Userl and In te rna lUser 1), 
and three objects as possible targets (namely, Bookl, Technica lRepor t l 
and Jou rna l l ) . However, object TechnicalRepor t l can never be the tar­
get of the two calls, since technical reports are never authorized for loan and 
consequently cannot be referenced by the attribute document of Loanl. Ob­
ject J o u r n a l l can be the target of the two calls only when the source is 
In t e rna lUse r 1, while it can never be returned by getDocument when the 
source is Userl , since normal users are not allowed to borrow journals. The 
static analysis conducted to determine the objects possibly referenced by class 
attributes cannot detect such infeasible situations, implied by the behavior 
of authorizedLoan. In general, static analyses have only limited capabili­
ties of dealing with the detection of infeasible conditions. On the other side, 
the results shown in Fig. 5.14 are conservative, in that they account for all 
possible run time behaviors. No interaction among objects can occur, when 
p r in tUser In f o is called, that is not represented in the statically recovered 
diagram. 

It would also be possible to recover the sequence diagram for the p r i n t ­
UserInf o method of class Library by means of a dynamic analysis. The 
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related test cases would include a sequence of operations that change the 
state of the library, by adding users and documents, as well as Loan objects 
associated to users borrowing documents. The method pr in tUser Inf o should 
be invoked with the library in different states. The resulting sequence diagrams 
would resemble that obtained statically and represented in Fig. 5.14, with a 
few important differences. Only instances of classes Book and Journal would 
be present in the diagram, since there is no way to make a TechnicalReport 
object participate in a loan. Moreover, when the source of the calls number 
1.6 and 1.7 is of type User, the target is always of type Book, in that there is 
no way to make a Journal object participate in a loan, when the associated 
user is not an In te rna lUser . 

The example above highlights the different and complementary nature of 
statically and dynamically recovered interaction diagrams. The former repre­
sent all possible interactions in a single diagram, but may include interactions 
that can never occur due to infeasible conditions that cannot be detected stat­
ically. The latter show only interactions that are ensured to be possible, since 
they are obtained by an actual program execution. However, their results are 
scattered in a set of diagrams (one for each test case), none of which usually 
represents all possible interactions in a conservative way. 

5.5 Related Work 

Information about class instances collected at run-time is dealt with by several 
research prototypes [42, 62, 67, 97]. In these research projects, creation of ob­
jects and inter-object message exchange are captured by tracing the execution 
of the program in a given set of scenarios. In [67] static information limited 
to method invocations (call graph) can be combined with execution traces, 
thanks to a common representation of both data in a single database of logic 
facts, from which views are created through queries. In [41] the call graph is 
animated by highlighting the currently executing methods. Construction of 
call graphs for Object Oriented programs and their accuracy are considered 
in [28, 83]. 

Sequence diagrams are constructed by means of a dynamic analysis in [29]. 
The proposed approach exploits Aspect Oriented Programmmg [40] to inter­
cept the execution of method calls in a non invasive way. The original source 
code is weaved with an external aspect that defines which run time events to 
capture and which data to record. The original code does not need be instru­
mented at all. Aspects are used to instrument Java code also in [8], where a 
mapping is defined between a metamodel of the execution traces and a meta-
model of the scenario diagrams, adapted from the UML sequence diagram 
metamodel. Such a mapping is given as a set of consistency rules expressed 
in the Object Constraint Language (OCL) [98]. They account for the mes­
sage exchanges that occur in non-distributed as well as in distributed systems 
and they are used to reverse engineer UML sequence diagrams from execu-
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tion traces. In distributed systems, the order of execution of the methods is 
determined without resorting to a global clock, by matching each sequence of 
remote calls with the corresponding sequence of remote method executions. 

In [20], points-to analysis is exploited to statically recover all possible 
execution traces for a given object, represented in a so-called Object Process 
Graph. Sequences of relevant instructions, including invocation instructions, 
are represented in the resulting graphs. Among the devised applications, these 
graphs can be used for protocol validation. 

Experimental results on the application of the method described in this 
chapter to a large C + + system are presented in [90]. The static technique 
for the reverse engineering of the interaction diagrams has been applied to 
about half million lines of C + + code. To generate diagrams of manageable 
size, both partial analysis (with sub-systems being considered separately) and 
focusing (on each single method) have been exploited. Combined together, 
they have been fundamental to produce usable diagrams. The resulting views 
have been evaluated by the author of the related code, who judged them 
extremely informative and able to summarize information spread across the 
code. The lesson we learned is that the interactions among objects are a great 
help in support of program comprehension, but at the same time they require 
proper interactive facilities and reduction methods to scale to large software 
systems. 



State Diagrams 

State diagrams can be used to describe the behavior exhibited by objects 
of a given class. They show the possible states an object can be in and the 
transitions from state to state, as triggered by the messages issued to the 
object. 

The effect of a method invocation on a target object depends on the state 
the object is in before the call. Thus, a description of an Object Oriented 
system in terms of message exchange only (see previous chapter, Interaction 
diagrams) does not reveal the state-dependent nature of the class behavior. 
This is where state diagrams can give a useful contribution. 

Reverse engineering of the state diagrams from the code is a difficult task, 
that cannot be fully automated. The states of the objects in the system under 
analysis are defined by the values assumed by their fields. However, it is not 
possible to describe each n-tuple of field values as a distinct state, because 
of their intractable growth, and equivalence classes of field values must be 
introduced. The definition of such equivalence classes requires a manual inter­
vention, while recovery of the state transitions can be automated, by means of 
an abstract interpretation of the program. Thus, given an abstract description 
of the field values and of the primitive operations on the abstract field values, 
it is possible to automatically derive a state diagram for the class, where the 
possible combinations of abstract values define the states, while the effects of 
method invocations are associated with the state transitions. 

This chapter is organized as follows: the first section summarizes the main 
features represented in state diagrams and discusses the possibility of reverse 
engineering them from an existing program. Section 6.2 provides a summary 
of the main concepts behind abstract interpretation. A thorough treatment 
of abstract interpretation would occupy a much longer book portion. The 
presentation given in this chapter aims at providing the basic background 
knowledge necessary to understand the technique involved in state diagram 
recovery, which is described in detail in Section 6.3, from an operational point 
of view. The application of the presented method to the eLib program is 
discussed in Section 6.4, while related works are commented in Section 6.5. 
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6.1 State Diagrams 

The behavior of the objects that belong to a given class can be described by 
means of state diagrams [1, 7, 31]. States represent conditions that charac­
terize the lifetime of an object, so that objects remain in a given state for a 
time interval, until some action occurs that makes the state condition invalid 
and triggers a state transition. Given the fields of a class, the combinations 
of all possible values define the most detailed decomposition of the class be­
havior into states. However, such a decomposition is typically impractical, for 
the huge number of states, and not very meaningful, for the high number of 
equivalent states. Thus, field values are aggregated into equivalence classes 
that partition the set of all field value combinations. Each equivalence class 
is represented as a state and an object is in such a state as long as its field 
values are in the related equivalence class. 

An object may change its state in response to a message it receives. Thus, 
state transitions are associated to method calls, and the dynamics of an object 
is abstracted into the state changes induced by method calls. 

Available notations for the state diagrams [1, 7, 69] allow for a richer set 
of properties that can be incorporated into them. For example, each state can 
be characterized by entry and exit actions, ongoing activity and the inclusion 
of submachines (contained sub-state diagrams). Moreover, transitions can be 
guarded by conditions and temporized events can be added to the events of 
the kind method call. However, for the purposes of this chapter, the basic 
elements of the state diagrams described above are sufficient. They consist of: 

• States, identified as equivalence classes of field values. 
• Transitions, triggered by method calls. 

coffee machine example 

Fig. 6.1 shows the state diagram for a hypothetical class that manages the 
main functions of an automatic coffee machine. The coffee machine accepts 
quarters of dollars in input (up to two quarters), and requires an amount 
equal to half of a dollar to prepare a coffee. The user can, at any time, insert 
a quarter, request the return of the quarters inserted so far or request the 
preparation of the coffee. Of course, the coffee will be prepared only if two 
quarters have previously been inserted. 

The behavior of the coffee machine class, described informally above, is 
explicitly represented in Fig. 6.1. Let us assume that the class field q records 
the number of quarters inserted so far, and that the boolean flag r represents 
the possibility to request the preparation of the coffee. According to the di­
agram in Fig. 6.1, the initial state of the objects of this class after creation 
is ^o, with q = 0 and r = F {F represents the boolean value false^ while T 
represents true). Graphically, SQ is identified as the creation state because it 
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SI {q=1,r=F) ^ S2 {q=2, r=T} 
insertQuarter 

makeCoffee insertOuarter 

Fig. 6.1. Example of state diagram describing an automatic cofTee machine. 

is directly reached from the small solid filled circle, which represents the entry 
state of the diagram. 

Requests to prepare a coffee {makeCoffee) or return money (reset) issued 
in 5o have no effect (self transitions outgoing from So), while the insertion of 
a quarter (insertQuarter) triggers the transition from So to Si. In the latter 
state, the number of quarters inserted so far is 1 and coffee cannot yet be 
prepared (q = l^r = F). 

A request to prepare a coffee issued in Si has no effect (self transition), 
while a request to return the inserted quarter has the effect of triggering a 
transition back to the initial state, as well as the "visible" effect of actually 
returning a quarter to the user. Insertion of a further quarter originates a 
transition to S2, where q = 2 and r = T. 

In 52 coffee can be prepared (r = T). Thus, an invocation of makeCoffee 
has the "visible" effect of delivering the beverage to the user, and has the 
"internal" effect of restoring the initial state So- A request to return money 
(reset) can also be issued in 52, resulting in 2 quarters being returned to the 
user, and the system moving to the initial state So- When the coffee machine is 
in ^2, additional quarters cannot be accepted. Correspondingly, their insertion 
(call to insertQuarter) does not change the internal state (self transition) and 
has the effect of immediately returning the inserted coin. 

Usefulness of the state diagrams is pretty clear from the example above. 
The same method call can have very different effects, according to the state of 
the target object. For example, a call to insertQuarter results in an increment 
of g' in So and 5i , but not in 52, and changes the value of the flag r only 
in Si. While interaction diagrams are focused on the message exchange that 
occurs among a set of collaborating objects, state diagrams are focused on the 
internal changes that occur within a single object of a given class. The kind of 
information they provide is thus complementary, and a complete description 
of the system's behavior can be achieved by properly combining these two 
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alternative views. In the next sections, a technique for the semi-automatic 
recovery of state diagrams from the source code will be defined within the 
framework of abstract interpretation. 

6.2 Abstract Interpretation 

The abstract interpretation framework [16] has been deeply investigated and 
is thoroughly described in a large body of literature (see for example [38]). 
Abstract interpretation is presented in this section from an operational per­
spective, with the purpose of providing a survey of the algorithmic details 
necessary for its usage in reverse engineering of the state diagrams. Some of 
the theoretical and formal aspects are deliberately skipped. 

The aim of abstract interpretation is determining the outcome of any pro­
gram execution, with any possible input, by approximating the actual pro­
gram behavior with an abstract behavior. Actual variable values are replaced 
by abstract values and the effect of each program statement on the variable 
values is abstracted into the effect it has on the corresponding abstract val­
ues. Abstract values represent equivalence classes of actual values, so that the 
problem of determining all values that all variables may have at each program 
point and in any execution becomes tractable. 

In order to perform an abstract interpretation of a given program, the 
following entities must be defined: 

• A domain of abstract values {abstract domain). 
• A mapping from concrete to abstract values (abstraction). 
• The abstract semantics of all primitive operations in the given program 

(abstract interpretation). 

The main constraint on the abstract domain is that it must define a com­
plete semi-lattice (with ordering "<") , i.e., its elements must be partially 
ordered and for each two elements a unique least upper bound must exist. 
The main constraint on the abstract interpretations of primitive operations is 
that they must be order-preserving. 

Let us indicate with D the abstract domain, and with Ints the abstract 
interpretation of statement s. The requirement on Intg is the following: 

\fv e D.'iw e D,v <w ^ Ints(v) < Ints(w) 

Usually, concrete variable values are replaced by symbolic values which 
encode entire equivalence classes of values, and the abstract domain is the 
powerset of the set of symbolic values. The powerset can be partially ordered 
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by set inclusion, and such an ordering defines a complete lattice, thus satisfy­
ing the constraint on the abstract domain. 

Abstract operations are typically defined for individual symbolic values, 
the extension to sets of values (i.e., elements of the abstract domain) being 
straightforward. 

The choice of the appropriate abstract domain is crucial, to obtain results 
that address the original motivation for performing an abstract interpretation 
of the program. While a too fine-grained domain makes abstract interpre­
tation computationally intractable, a too high-level domain might produce 
over-conservative results, that are not useful to answer the initial questions 
on the program. In fact, the output of abstract interpretation is safe, i.e. the 
values produced in any actual execution are always a "concretization" of the 
abstract values. However, the latter might be over-conservative, i.e., the ab­
stract values produced by the abstract interpretation might entail concrete 
values that can never occur in a real execution. 

Once abstract domain and abstract operations are defined, the abstract in­
terpretation of the program consists of computing the fixpoint of the abstract 
values collected at each statement from the predecessors and transformed by 
the abstract interpretation function associated with such a statement. 

coffee machine example 

The two state variables in the automatic coffee machine example are q, 
holding the number of quarters inserted so far, and r, which is true when 
coffee can be obtained from the machine. Different abstract domains can be 
chosen when performing an abstract interpretation of this program. For ex­
ample, the following symbolic values can be used for variables q and r: 

Concrete 
q = 0 
q = 1 
q = 2 
q> 2 
r = true 
r = false 

values Abs value (1) 
q:0 
q:l 
q:2 
q:gt2 
r:T 
r:F 

Another possible abstraction might collapse all values of q greater than zero 
into a single symbolic value: 
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Concrete values |Abs value (2) 
q = 0 
q> 0 
r = true 
r = false 

q:Z 
q:GZ 
r:T 
r:F 

Abstract semantics must then be defined for the operations in the program. 
Since only constant values are assigned to the variables q and r, the following 
simplified abstract interpretation table can be defined for the assignment op­
erator: 

Operation 

q = 0 
q = 1 
q = 2 
r = t r u e 
r = f a l s e 

Abs sem (1) 

{r:*} 
{r:*} 

{q:0} 

{q:2} 
{r:T} 
{r:F} 

Abs sem (2) 

{Q-*} 

{q:*} 
{r:*} 
{r:*} 

{q:Z} 
{q:GZ} 
{q:GZ} 
{r:T} 
{r:F} 

where {q:*} and {r:*} indicate any symbolic value prefixed respectively by 
"q:" or "r:". The abstract semantics of the increment operator is straightfor­

ward: 

Operation Abs sem (1) 

q++ {q:0} - . {q:l} 
{q:l} - . {q:2} 
{q:2} - {q:gt2} 
{q:gt2} -^ {q:gt2} 

Operation Abs sem (2) 

q++ {q:Z} -
{q:GZ} 

[q-.GZ] 
-. {q:GZ} 

The other operators used in the coffee machine program are relational oper­
ators, such as the equality comparison. Since variables are compared only to 
constant values in this program, the following simplified abstract semantics 
of the equahty comparison can be used: 

Operation 

q = = 2 

Operation 

q == 2 

Abs sem (1) 
true for the abstract value q:2 
false for the abstract values q:0, q:l, q:gt2 
Abs sem (2) 
unknown for the abstract value q:GZ 
false for the abstract value q:Z 
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If the abstract value of q is q:GZ, the result of the evaluation of q == 2 is 
unknown, and conservatively one has to assume that both possibilities might 
occur. When the relational expression q == 2 is part of a conditional state­
ment (e.g., i f (q == 2) r = t r u e ; ) , the result of its abstract interpretation 
determines the way abstract values are propagated forward. If the result is 
true, the abstract value is propagated only along the then branch of the con­
ditional statement. If the result is false, only the else branch is followed. If 
the result is unknown, both branches are taken. 

The abstract semantics above have been given for individual abstract val­
ues, but the generalization to sets of abstract values is easy to achieve. For 
example, the increment applied to the set {q:0, q:gt2, r:T] gives {q:l, q:gt2, 
r.'T}, i.e., the increment is applied separately to individual values and the re­
sult is the union of the results. Of course, when it is applied to r.-T it behaves 
like the identity. Another example is the equality comparison. Abstract eval­
uation of q == 2 for {q:l, q:gt2, r:T] gives false for the first two values and is 
undefined on the third abstract value. If the condition q == 2 is part of an if 
statement, all values will be propagated only along the false branch (includ­
ing r:T), since no abstract value reaching the i/statement can ever make the 
related condition true. If the set of abstract values reaching the z/statement 
is {q:l, q:2, r:T], the condition can be both true and false. Correspondingly, 
{q:2, r:T} is propagated along the then branch, while {q:l, r:T} is propagated 
along the else branch. In order to decide if the abstract value r:T should be 
propagated only along the then branch (with q:2) or the else branch (with 
q:f), a more refined abstract domain would be necessary, in which q and r 
are represented jointly (e.g., using the abstract values <q:l,r:T>, <q:2,r:T>, 
..., <q:gt2,r:F>). In the second abstract domain, if {q:GZ, r:T} reaches the 
same i/statement, both values must be propagated along both branches of the 
conditional statement, in that the value of the related condition is unknown. 

public int insertQuarterO { 
if (q == 2) 

return 1; 
q++; 
if (q == 2) 

r = true; 
return 0; 

} 

Abs dom (l)|Abs dom (l)|Abs dom (2) 1 
Initial values | 

{q:0, r:F} 
{q:0, r:F} 

{} 
{q:l, r:F} 

{} 
{q:l, r:F} 
{q:l, r:F} 

{q:l, r:F} 
{q:l, r:F} 

{} 
{q;2, r:F} 

{q-.2, r:T} 
{q:2, r:T} 
{q:2, r:T} 

{q:Z, r:F} 1 
{q:Z, r:F} 

{} 
{q:GZ, r:F} 

{q-.GZ, r:T} 
{q:GZ, r;T, r:F} 
{q:GZ, r:T, r:F} 

Fig. 6.2. Example of abstract interpretation under different initial conditions and 
for different abstract domains. 
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Fig. 6.2 shows three abstract interpretations of the method inse r tQuar t e r . 
The first two refer to the abstract domain (1) with 4 symbohc values for q, 
while the last one refers to the smaller domain (2) with only 2 symbolic values 
for q. Two different initial conditions are considered in the first two interpre­
tations. 

In the first abstract interpretation, conditions in both z/statements eval­
uate to false, since q:2 is not among the propagated values. Correspondingly, 
the output of the two associated then branches is the empty set. In the second 
abstract interpretation, the first condition q == 2 evaluates to false, while the 
second evaluates to true, due to the incremented value assigned to q. Thus, 
only the else branch is taken in the first if, while the then branch is taken in 
the second z/statement. As a result, in the second interpretation the final ab­
stract value of r is r: T, indicating that the coffee machine is ready to prepare 
a coffee. 

In the last abstract interpretation, the result of incrementing q:Z is q:GZ. 
Such a value does not allow deciding on the truth value of the condition in the 
second z/statement. Correspondingly, both branches are taken, and the final 
result contains both values r:T and r:F, associated to variable r. The only 
"true" value is r;F, because when the starting value of q is zero (q.'Z), the 
then branch of the if statement cannot be taken and r: T cannot be assigned 
to r. However, the low granularity of the abstract domain chosen does not al­
low distinguishing q = 1 from q = 2 and correspondingly the actual execution 
path cannot be obtained. It should be noticed however that the paths fol­
lowed during abstract interpretation are a superset of the "true" paths (safe 
interpretation), and that the final results contain those that actually occur 
(conservative output). 

The higher accuracy obtained using the first abstract domain, with respect 
to the second one, indicates the importance of choosing the right abstraction. 
Such a choice depends on the problem being solved by abstract interpretation. 
In some cases, the gross grain abstraction (2) may suffice. In the next section, 
application of abstract interpretation to the recovery of the state diagrams 
will be described and the problem of choosing the right abstraction will be 
reconsidered in such a context. 

6.3 State Diagram Recovery 

The first step in the recovery of a state diagram for a given class consists 
of defining an appropriate abstract domain for its attributes and (possibly) 
for the variables involved in attribute computations. Correspondingly, the ab­
stract semantics of each operation in the class methods must be also provided. 
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Then, abstract interpretation of the class methods gives the transitions from 
state to state to be represented in the state diagram. The algorithm for this 
final step is described in detail below. 

In a state diagram, the effects of method invocation on the attribute values 
are abstracted by considering only "meaningful" equivalence classes of such 
values. The decision on which equivalence classes should be considered is a 
non trivial one, and deeply affects the characteristics of the resulting state 
diagram. Thus, the role of the programmer in this recovery process consists 
of establishing proper groupings of attribute values that correspond to the 
different states in which the class can be, and that give rise to different be­
haviors, in response to method invocations. Such a choice can by no means 
be automated. Usually, indicators of the boundary values that separate the 
equivalence classes are available from the constant values used in conditional 
expressions (if any). Since different execution paths are taken when values are 
below or above these boundaries, it is likely that these characterize meaning­
ful equivalence classes of values. However, human intervention is unavoidable 
to determine the proper granularity of the abstraction. Moreover, it is often 
the case that accurate results can be obtained from abstract interpretation 
only if some groups of attributes/variables are described jointly, since they 
are mutually influenced by the values of the each other. If no joint descrip­
tion is adopted, the result of abstract interpretation is over-conservative and 
produces a state diagram where abstract values that can never occur in any 
execution are present in some states. A possible solution is an iterative state 
diagram recovery process, where the output of an initial guess on a possi­
ble abstract domain is refined if it appears that the resulting state diagram 
contains lots of non admissible attribute values. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0 
11 
12 
13 
14 
15 
16 

1 17 

initStates = {}, pendStates = {}, allStates = {} 
for each class constructor c 

s = interpret{c, {}) 
initStates = initStates U {s} 
pendStates = pendStates U {s} 
allStates = allStates U {s} 

e n d for 
whi le 1 pendStates | > 0 

r = remove(pendStates) 
for each class method m 

s = interpret(m, r) 
if s ^ allStates 

pendStates = pendStates U {s} 
allStates = allStates U {s} 

e n d if 
e n d for 

e n d whi le 

Fig. 6.3. Algorithm for the recovery of the state diagram. 
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Fig. 6.3 shows the pseudocode of the recovery algorithm. It assumes that 
an abstract domain for the class variables has already been properly defined. 

First of all, the algorithm determines the initial states in which any object 
of the given class can be. This is obtained by executing an abstract inter­
pretation of each class constructor starting from an initially empty state (see 
line 3). The state obtained at the exit of each constructor after abstract in­
terpretation is one of the possible initial states for the objects of this class 
(line 4). Such a state is also a possible starting point for a further method 
invocation, so that it must be inserted into a set of pending states {pend-
States) that will be considered later by abstract interpretation (line 5). Each 
available class method will be applied to them. Moreover, the state reached 
after constructor execution is one of the states to be included in the resulting 
state diagram. Correspondingly, it is inserted into the set of all the states in 
the diagram {allStates, fine 6). All the edges in the state diagram that end at 
the initial states, recovered in this phase, depart from the entry state of the 
diagram, which is conventionally indicated as a small solid filled circle. 

Then, the recovery algorithm repeatedly executes an abstract interpreta­
tion of the class methods as long as there are pending states to be considered 
(loop at line 8). Each pending state is removed from pendStates (fine 9), and 
each class method is interpreted using the removed pending state as the initial 
state (line 11). When the final state obtained by the abstract interpretation 
has not yet been encountered, it is added both to the set of still pending states 
(line 13) and to the set of diagram states (line 14). 

Recovery of the edges in the state diagram is not explicitly indicated in 
Fig. 6.3. However, the related rules are quite simple. As described above, the 
initial states (initStates) are the targets of edges outgoing from the entry state. 
As regards the other states, when the abstract interpretation of method m 
is conducted (line 11), the starting state used by the interpretation is r, and 
the final state it produces is s. Thus, an edge labeled m is added in the state 
diagram from r to s. 

coffee machine example 

Let us consider the application of the algorithm in Fig. 6.3 to a hypothet­
ical class Cof f eeMachine, implementing the coffee machine example, using 
the first abstract domain (1) defined in Section 6.2. Let us assume that this 
class has only one constructor, which resets the behavior of the machine by 
assigning 0 to ^ and false to r. Correspondingly, only one initial state is re­
covered by performing the abstract interpretation of the constructor starting 
from the empty set: {q:0, r:F} (see Fig. 6.4, method Cof f eeMachine). 

The class Cof f eeMachine may define three methods, r e s e t , inse r tQuar -
t e r and makeCof f ee, which, following the steps in Fig. 6.3, are interpreted 
from the only pending state produced so far, the initial state {q:0, r:F}. While 
r e s e t and makeCof f ee give a final state equal to the initial state (see Fig. 6.4), 
so that no other pending state is generated, method in se r tQua r t e r produces 
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Method 
CoffeeMachine 
reset 

insertQuarter 

mcikeCoffee 

Initial state 

{} 
{q:0, r:F} 
{q:l, r:F} 
{q:2, r:T} 
{q:0, r:F} 
{q:l, r:F} 
{q:2, r:T} 
{q:0, r:F} 
{q:l, r:F} 
{q:2, r:T} 

Final state 
{q:0, r:F} 
{q:0, r:F} 
{q:0, r:F} 
{q:0, r:F} 
{q:l, r:F} 
{q:2, r:T} 
{q:2, r:T} 
{q:0, r:F} 
{q-l,r:F} 
{q:0, r:F} | 

Fig. 6.4. Results of the abstract interpretation of the methods in the Coff eeMachine 
class under all possible initial states. 

a final state never encountered so far, {q:l, r:F}. This is added to the set of 
pending states and is examined in the next iteration of the algorithm. The 
detailed steps performed in the abstract interpretation of i n s e r t Q u a r t e r from 
the initial state {q:0, r:F} have already been described (see Fig. 6.2). 

Then, the next pending state, {q:l, r;F}, is considered. The abstract inter­
pretation of makeCoffee produces a final state equal to the initial one, while 
r e s e t gives a final state equal to the already encountered state {q:0, r:F}. In­
terpretation of i n s e r t Q u a r t e r (see Fig. 6.2) generates a new state, {q:2, r :T}. 
Interpretation of r e s e t , i n s e r t Q u a r t e r and makeCoffee from such a state 
completes the execution of the state diagram recovery algorithm. A graphical 
display of the resulting diagram has been provided previously, in Fig. 6.1. 

6.4 The eLib Program 

Let us consider the class Document from the eLib program (see line 159 in 
Appendix A). Among its attributes, the one which mostly characterizes its 
state is loan. The set of all possible values that can be assigned to loan can 
be abstracted into loanmull^ representing the case where loan references no 
object (the document is not borrowed), and loaniLoanl, representing the case 
where loan references an object of type Loan (the document is borrowed). 
The abstract domain to use in the construction of the state diagram for this 
class is thus: 

p{{loan:null^ loan.'Loanl}) 

where p indicates the powerset. 
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The class methods that may change the state (restricted to the attribute 
loan) of a Document object are: addLoan (defined at hue 202) and removeLoan 
(defined at fine 205). In order to perform their abstract interpretation, the 
specification of the abstract semantics is required for the two following as­
signment statements (taken from lines 203 and 206): 

Statement 
loan = In 
loan = n u l l 

Abstract semantics 
{loan:*} -^ {loan:Loanl} 
{loan:*} —> {loan:null} 

The underlying hypothesis is that the method addLoan has a precondition, 
requiring that it is invoked only with a non null parameter. Such a check is not 
performed by the method itself, being considered the caller's responsibility. 
Under this hypothesis, the first assignment, where the right hand side is the 
parameter In of addLoan, does not need to include loan:null in the result set 
of its abstract semantics. 

Here is the result of the abstract interpretation of the constructor Document 
(line 166), of the methods addLoan (line 202) and removeLoan (line 205) 
from all possible starting states: 

Method 
Document 
addLoan 

removeLoan 

Initial state 

{} 
{loan: null} 
{loan:Loanl} 
{loan: null} 
{loan:Loanl} 

Final state 
{loan: null} 
{loan:Loanl} 
{loan: Loan 1} 
{loan: null} 
{loan: null} 

We can assume that addLoan is called only if the Document is available (see 
check at line 59), i.e., from state {loan:null}^ and that removeLoan is called 
only when the document is out (see check at line 68). This prunes two self-
transitions from the state diagram: that from {loan:Loanl} to {loan:Loanl}, 
due to the call of addLoan, and that from {loan:null} to {loan:null}, due to 
removeLoan. The resulting state diagram is shown in Fig. 6.5. 

As a second example, let us consider the class User (see line 281) and its 
attribute loans , which can be regarded as the one that defines the state of the 
objects belonging to this class. Since loans is of type Col lec t ion , its values 
can be abstracted by the number of elements it contains. We can distinguish 
the case of no element inserted (abstract value loans:empty), from the case of 
one element inserted (abstract value loans:one), from the case of more than 
one element inserted (abstract value loans:many). 

The methods that possibly modify the content of the Col lec t ion loans 
are: addLoan (line 314) and removeLoan (line 320). Correspondingly, the ab­
stract semantics of the following operations is required: 
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so {loan=null} 

addLoan removeLoan 

S1 {loan=Loan1} 

Fig. 6.5. State diagram for class Document. 

Statement Abstract semantics 
loans . add( loan) {loans:empty} -^ {loans:one} 

{loans:one} -^ {loans:many} 
{loans:many} —» {loans:many} 

loans.remove(loan) {loans:empty} -^ {loansiempty] 
{loans:one} —> {loansiempty, loans:one} 
{loans:many} -^ {loans:one, loans:many} 

Removal of an element from a Co l l ec t i on containing just one element 
may give an empty collection, if the removed element is contained in the 
Col lec t ion , or an unchanged Col lec t ion , if the element is different from 
the contained one. Removal of an element from a C o l l e c t i o n with more than 
one (many) elements may still give a Co l l ec t i on with more than one element, 
or may give a C o l l e c t i o n with exactly one element, if it previously contained 
two elements, among which one is equal to that being removed. 

Assuming that the precondition of the method removeLoan is the presence 
of its parameter loan in the Co l l ec t ion loans (this is ensured in its invo­
cation inside class Library at line 53, as apparent from the body of method 
returnDocument, lines 66-75), the abstract semantics given above can be sim­
plified into: 

Statement 
l o a n s , add (locin) 

loans.remove(loan) 

Abstract semantics 
{loans:empty} -^ {loans:one} 
{loans:one} —» {loans:many} 
{loans:many} -^ {loans:many} 
{loans: empty} 
{loans :one} —^ 
{loans: many} 

—^ {loans:empty} 
{loans:empty} 

-^ {loans:one, loans:many} 

The abstract interpretation of methods User (line 288), addLoan (hue 314) 
and removeLocin (line 320) using the abstract semantics above, produces the 
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state diagram depicted in Fig. 6.6. The transition from state {loans:many} 
to {loans:one, loans:many} due to the invocation of removeLoan is repre­
sented as a non deterministic choice between the target states {loans:one} 
and {loans:many}. Moreover, the precondition of removeLoan discussed above 
ensures that it is never called when loans is empty. Thus, no self-transition 
labeled removeLoan is present in the state SQ. 

so {loans=empty} 

addLoan removeLoan 

SI {loans=one} 

addLoan 

addLoan a 
removeLoan 

removeLoan 

S2 {loans=many} D 
Fig . 6.6. State diagram for class User. 

Let us consider the class Library (see line 3). Its three attributes doc­
uments, u se r s , and loans define the state of its objects. It is possible to 
consider these three attributes separately, building a distinct state diagram 
for each of them. The result is a set of so-called projected state diagrams. 
The overall state of the class, described by the joint values of all its state 
variables, is projected onto a single state variable, by considering the values 
it can assume and ignoring the values assumed by the other variables. 

Since the three attributes documents, u se r s , and loans are containers of 
other objects, it is possible to abstract their values into the symbolic values 
empty and some, indicating respectively that no object is contained or that 
some (i.e., at least one) objects are contained. Abstract interpretation of the 
methods that modify these containers is similar to the abstract interpretation 
of the methods of class User described above, with the only difference being 
that the values of container loans from class User have been modeled by three 
abstract values {empty, one, and many), while for class Library no distinction 
is made between one and many, both of which are abstracted as some. 

The three projected state diagrams resulting from the abstract interpreta­
tion of methods addDocument (hue 24), removeDocument (line 31), addUser 
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(line 8), removeUser (line 15), addLoan (line 40), removeLoan (line 48) are 
depicted in Fig. 6.7. The removal methods removeDocument and removeUser 
have no effect if applied in the state 5o {empty) of the diagrams for the 
attributes documents and use r s . On the contrary, the removal method 
removeLoan can never be invoked in the state *S'o of the diagram for loans , 
because of the check performed by the calling method returnDocument (see 
line 68, where i s Out returns true only if the document references a non null 
Loan object, stored inside the attribute loans of class Library) . 

so {clocuments=empty} 

removeDocument 

addDocument 

SO {users=empty} SO {loans=empty} 

removeUser 

removeDocument addUser removeUser addLoan removeLoan 

S1 {documents=some} S1 {users=some} S1 {loans=some} 

addDocument 
removeDocument 

addUser 
removeUser 

addLoan 
removeLoan 

Fig. 6.7. Projected state diagrams for class Library. 

If the attributes of a class vary independently from each other, the com­
bined state diagram can be obtained as the Cartesian product of the pro­
jected state diagrams, with a number of states that grows as the product of 
the number of states in the separate diagrams. Transitions are obtained by all 
combinations of transitions in the substates. 

If we consider the combined state diagram for class Library, the total 
number of states it contains is not 8 (2 x 2 x 2), as it would occur in case 
of independent projections. The combined state diagram, shown in Fig. 6.8, 
contains 5 states, because some combinations in the Cartesian product are 
prohibited by preconditions that are checked before calling some of the meth­
ods in this class. 

Let us represent the three abstract values that have been defined for the 
three state attributes (document, u s e r s , loans) of this class as a triple, 
with the symbolic values e indicating the abstract value empty and s indi­
cating some. The triple < e, s, e > is thus the abstract value for a combined 
state of class Library , with the following joint values of the state variables: 
documents=empty, users=some, loans=empty. 

Fig. 6.8 shows the combined state diagram, as obtained by applying some 
constraints (explained below) on the invocation of the involved methods. As 
regards the first two variables represented in the triples that characterize the 
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so {<e, e, e>} 
addDocument 

SI {<s, e, e>} 

removeUser 
removeDocument 

addUser 

removeDocument 

eUser addUser 

, addDocument , 

addDocument 
removeDocument 
removeUser 

removeUser 

S2 {<e, s, e>} 

addUser 
removeUser 
removeDocument 

S3 {<s, s, e>} 

removeDocument 

addLoan 

addDocument 
removeDocument 

addUser 
removeUser 

addUser 
removeUser 

addDocument 
removeDocument 

removeLoan 

S4 {<s, s, s>) 

addLoan 
removeLoan 

Fig. 6.8. Combined state diagram for class Library. 

states, it is evident that they vary independently from each other. In fact, all 
possible combinations of the values of these variables are in the diagram, and 
every method invocation remains possible in each state. Correspondingly, the 
upper part of the diagram in Fig. 6.8 contains exactly 4 (i.e., 2 x 2 ) states 
(iSo, Si.Si.Sz) and 20 related transitions. 

The invocation of method addLoan can only be made in state Sa, where 
documents=some and users=some, i.e., only in the presence of registered 
users and documents in the library. In fact, the method borrowDocument 
checks (see Hne 57) that both of its parameters (user of type User and doc of 
type Document) are not null. Since such parameters are obtained from class 
Library, which in turn exploits its attributes u se r s and documents to re­
trieve them, the execution of borrowDocument proceeds until the invocation 
of addLoan only if at least one user (referenced by parameter user) and one 
document (referenced by doc) are in the library. The result of calling addLoan 
in 53 is a transition to 54, where all state variables are equal to some, i.e., 
there are registered users and documents, and there are active loans. 

Since method removeLoan is never called with loans empty, as discussed 
above, the only state that has outgoing transitions labeled by removeLoan is 
54, where loans=some. The deletion of a loan can either lead to a state in 
which some loans are still active (self transition in 54), or it can lead to a 
state where no loan is active in the library (53). This is the reason for the non 
deterministic transition triggered by removeLoan, with two possible target 
states. 

In state 54, removal of documents (method removeDocument) or users 
(method removeUser) can never result in a state of the Hbrary with an empty 
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set of documents and some loans still active (< e ,s , s >) , or with an empty 
set of users and some loans still active (< s,e,s >) . In fact, it is not possible 
to remove a user who is borrowing some documents (see check performed 
at line 17), and it is not possible to remove a document that is borrowed 
by a user (see check performed at line 33). Consequently, when one or more 
loans are active {loans:some)^ the associated users and documents cannot be 
removed from the library, thus making the states < e, 5, s > and < s,e,s > 
unreachable. 

6.5 Related Work 

Recovering a finite state model of a program has been investigated in the 
context of model checking [15, 19]. One of the major obstacles that has been 
encountered in the extension of model checking from hardware to software ver­
ification is the problem of constructing a finite state model that approximates 
the executable behavior of a program in a reliable way. Manual construction 
of such models is expensive and error prone. For complex systems it is out of 
the question. The possibility of using abstract interpretation for this purpose 
has been investigated in [15, 19]. Automated support for the abstraction of 
the source code into a finite state model is provided by the tool Bandera, 
which allows for the integration of abstraction definitions into the source code 
of the program under analysis. Moreover, customization of the abstraction to 
check a particular property is also possible. 

Another tool that employs abstraction to produce a tractable model of an 
input software system is Java Path Finder [95]. Program annotations consist­
ing of user-defined predicates are used to generate another Java program in 
which concrete statements are replaced by the abstracted ones. Model check­
ing is conducted on the abstracted version of the program, which exhibits a 
tractable, finite state, behavior. The model checker explores the state space by 
performing a symbolic execution of the program. The state being propagated 
in the symbolic execution includes a heap configuration, a path condition on 
primitive fields, and thread scheduling. Whenever the path condition is up­
dated, it is checked for satisfiability using an external decision procedure. If it 
cannot be satisfied, the model checker backtracks. In this way, infeasible por­
tions of the state space are not explored. Java Path Finder has been used for 
test case generation [96], with the test criterion (e.g., reaching every control 
flow branch) encoded as a property. When the model checker can determine 
a path along which such a property is true, associated with a satisfiable path 
condition, it is possible to find a witness, that is, a set of concrete values that 
make the path condition true and respect the constraints on the heap con­
figuration (i.e., on the object fields referencing other objects). This is easily 
converted into a test case for the given program. 

Besides program understanding, one of the most important applications of 
the state diagrams, possibly recovered from the code, is state-based testing [6, 
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92]. According to this testing methodology, the class under test is modeled by 
its state diagram and a set of test cases is considered adequate for the unit 
test of the class when the states and the transitions in the state diagram are 
covered up to a level specified in the objective coverage criterion. The most 
widely used coverage criterion in state-based testing is transition coverage. It 
requires that all transitions from state to state be exercised at least once by 
some test case. This ensures that a class is not deUvered with untested states 
or state transitions. As a support to defect finding, it forces programmers to 
test their code by exercising all the states and all the possible state changes 
triggered by messages received by the object under test. 



Package Diagram 

The complexity involved in the management and description of large software 
systems can be faced by partitioning the overall collection of the composing 
entities into smaller, more manageable, units. Packages offer a general group­
ing mechanism that can be used to decompose a given system into sub-systems 
and to provide a separate description for each of them. 

Packages represented in the package diagram show the decomposition of 
a given system into cohesive units that are loosely coupled with each other. 
Each package can in turn be decomposed into sub-packages or it can contain 
the final, atomic entities, typically consisting of the classes and of their mutual 
relationships. 

The dependency relationships shown in a package diagram represent the 
usage of resources available from other packages. For example, if a method 
of a class contained in a package calls a method of a class that belongs to a 
different package, a dependency relationship exists between the two packages. 

Most Object Oriented programming languages provide an explicit con­
struct to define packages. Thus, their recovery from the source code is just a 
matter of performing a pretty simple syntactic analysis. Dependencies among 
packages are also quite easy to retrieve, since they correspond to references 
to resources possessed by other packages (method calls, usage of types, etc.). 

A more interesting and challenging situation is one in which no package 
structure was defined for a given software system, while its evolution over 
time has made it necessary (for example, because of an increased system's 
size). Code analysis techniques can be employed to determine appropriate 
groupings of entities to be inserted in a same package. In this scenario, pack­
ages are recovered from a system that does not possess any package structure 
at all. Another similar scenario consists of restructuring an existing package 
organization. If there are reasons to believe that the current decomposition 
of the system into packages is not satisfactory, code analysis can be used to 
determine an alternative decomposition, with more cohesive and less coupled 
packages. Migration to the new package structure can thus be supported by 
the recovery of an alternative package organization from the code, ignoring 
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the existing one. The exercise of recovering a package structure from the code 
can be useful also to assess the validity of the current decomposition into 
packages, by contrasting that recovered with the existing one. 

The scenarios in which package diagram recovery applies are clarified in 
Section 7.1. Among the techniques available for the identification of cohesive 
groups of classes, clustering is considered in detail in Section 7.2, while concept 
analysis is presented in Section 7.3. Application of these two methods to the 
eLib program is described in Section 7.4. A discussion of the related works 
concludes the chapter. 

7.1 Package Diagram Recovery 

The complexity of large software systems can be managed by decomposing the 
overall system into smaller units, called packages, that are internally highly 
cohesive and that exhibit a low coupling with the other packages in the decom­
position. In turn, each package can be decomposed into sub-packages, when 
its complexity requires a finer grain subdivision. The atomic elements even­
tually included in the lower level packages are usually the classes used in each 
subsystem. Although the decomposition into packages is a general mechanism 
that can be used also with entities different from classes (e.g., states in state 
diagrams), in the following we will focus on the most frequently occurring 
case, in which packages contain groups of classes (or other sub-packages). 

Since modern Object Oriented programming languages, such as Java, pro­
vide an explicit mechanism for package definition, recovery of the organization 
of the classes into packages and of the decomposition of packages into sub-
packages is straightforward and requires just the ability to parse the source 
code. The dependency relationship between packages is also easy to retrieve. 
In fact, once the kinds of relevant dependencies are defined (e.g., method calls 
between classes in different packages; declaration of variables whose type is 
defined in another package), their identification in the source code is typically 
just a matter of performing some simple syntactic or semantic (construction 
of symbol table with type information) analysis. 

Software systems tend to evolve over time in a manner that is difficult 
to predict in advance, so that their periodic reorganization is often necessary 
to preserve the original quality of the design. In this context, recovery of 
the package diagram from the source code cannot be based on the declared 
packages, since these may refiect the initial decomposition of the system, which 
does not correspond any longer its actual structure. Techniques for the reverse 
engineering of highly cohesive and lowly coupled groups of classes play an 
important role in this situation. 

Three possible scenarios in which package diagram recovery should be 
based on the actual code organization, instead of the declared package struc­
ture, are depicted in Fig. 7.1. When classes are not grouped into packages 
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(a) Flat sequence of classes (b) Package restructuring (c) Package assessment 

Fig. 7 . 1 . Scenarios of package diagram recovery from code properties. 

(see Fig. 7.1, (a)) or when the existing package structure is considered inap­
propriate (see Fig. 7.1, (b)), recovery of the package diagram from the code 
may provide useful indications on how to (re-)organize classes into packages. 
In these two cases, either no package structure exists, or the available pack­
age structure is ignored. A third situation may occur, in which the existing 
package structure is evaluated to identify opportunities of improvement (see 
Fig. 7.1, (c)). In such a scenario, the recovered package diagram is expected 
to have a large overlap with the existing package organization, and interesting 
information is provided by the diflPerences (if any). Classes that are assigned to 
different packages in the two package diagrams (the actual and the recovered 
one) should be carefully inspected to assess the opportunity of reassigning 
them. The resulting organization of the system, in all three cases sketched 
above, will be characterized by more cohesive packages with fewer dependen­
cies between each other. This is expected to affect positively the activities of 
program understanding and code evolution. 

Recovery of the package diagram in the three scenarios of Fig. 7.1 is based 
on proper code properties. Classes that exhibit commonalities in such prop­
erties are grouped in a same package. Several algorithms can be employed to 
identify such commonalities and to group classes together. The code properties 
to consider in the recovery process vary accordingly, and may be customized 
based on the available knowledge about the system. Typical examples of such 
properties are the types of class attributes and of method variables and pa­
rameters, and the invocations of methods that belong to other classes. The 
fact that a group of classes operate on the same types or depend one on the 
other due to method invocations hint that they should be grouped into a same 
package. In the next two sections more details are provided on which prop­
erties to consider and how to infer packages (i.e., highly cohesive and loosely 
coupled groupings of classes) from such properties. 
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7.2 Clustering 

Clustering is a general technique aimed at gathering the entities that compose 
a system into cohesive groups (clusters). Clustering has several applications in 
program understanding and software reengineering [4, 54, 99], and has been 
recently applied to Web applications [52, 65]. 

Given a system consisting of entities which are characterized by a vector 
of properties {feature vector) and are connected by mutual relationships, there 
are two main approaches to clustering [4]: the sibling link and the direct link 
approach. In the sibling link approach, entities are grouped together when 
they possess similar properties, while in the direct link approach they are 
grouped together when the mutual relationships form a highly interconnected 
sub-graph. 

Main issues in the application of the sibling link approach are the choice of 
the features to consider in the feature vectors, the definition of an appropriate 
similarity measure based on such features and the steps for the computation 
of the clusters, given the similarity measures. The following section. Feature 
Vectors, examines such issues in detail. 

In the direct link approach, clustering is reduced to a combinatorial op­
timization problem. Given the relationships that connect entities with each 
other, the goal of clustering is to determine a partition of the set of enti­
ties which concurrently minimizes the connections that cross the boundaries 
of the clusters and maximizes the connections among entities belonging to a 
same cluster. Details for the application of this approach are provided in the 
following section. Modularity Optimization. 

7.2.1 Feature Vectors 

A feature vector is a multidimensional vector of integer values, where each 
dimension in the vector corresponds to one of the features selected to describe 
the entities, while the coordinate value represents the number of references to 
such a feature found in the entity being described. Selection of the appropriate 
features to use with a given system is critical for the quality of the resulting 
clusters, and may be guided by pre-existing knowledge about the software. 

In the literature, several different features have been used to characterize 
procedural programs, with the aim of remodularizing them [4, 54, 99]. Some 
of such features apply to Object Oriented software as well, and can be used 
to derive a package diagram from the source code of the classes in the system 
under analysis. Examples of such features are the following: 

User-def types: Declaration of attributes, variables or method parameters 
whose type is a user defined type. 

Method calls: Invocation of methods that belong to other classes. 

The rationale behind the two kinds of features above is that classes oper­
ating on the same data types or using the same computations (method calls) 
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are likely to be functionally close to each other, so that clustering is expected 
to group them together. 

In addition to the syntactic features considered above, informal descriptive 
features can be exploited for clustering as well. For example, the words used 
in the identifiers defined in each class under analysis or in the comments are 
informal descriptive features that may give a useful contribution to clustering. 
The main limitations of informal features are that they depend on the ability 
of the code to be self-documenting and that they may be not up to date, if they 
have not been evolved along with the code. On the other side, they are more 
abstract than the syntactic features, being closer to a human understanding 
of the system. 

Once the features to be considered in the feature vectors have been se­
lected, a proper similarity measure has to be defined. It will be used by the 
clustering algorithm to compare the vectors. The entities with the most similar 
feature vectors are inserted in a same cluster. In alternative to the similar­
ity measure, it is possible to define a distance measure and to group vectors 
at minimum distance. Usually, similarity measures are favored over distance 
measures, because they have a better behavior in presence of empty or quasi-
empty descriptions. In fact, if most (all) of the entries in two feature vectors 
are zero, any distance measure will have a very low value, thus suggesting 
that the two entities should be clustered together. However, it may be the 
case that the two entities are very dissimilar and that the low distance is 
just a side effect of the quasi-empty description. Consequently, it is preferable 
to use similarity, instead of distance, measures, in presence of quasi-empty 
descriptions. 

Among the various ways in which similarity between two vectors can be 
defined, the metrics most widely used in software clustering are the normalized 
product (cosine similarity) and the association coefficients. 

Normalized product: Normahzed vector product of the feature vectors: 
sim{X,Y) = X^Y/{\\X\\\\Y\\) 

Association coefficients: Derived metrics are based on the following coef­
ficients: 
a = ||^ny|| 
6= | |x \y | | 
c=\\Y\X\\ 
d=\\:F\{XuY\\ 
Jaccard: sim{X, Y) •= a/{a-\-b + c) 
Simple Matching: sim{X, Y) = {a-^ d) / [a-\-h + c-]- d) 
S0rensen-Dice: sim{X, Y) = 2a/{2a -h 6 + c) 

The normalized product gives the scalar product between two vectors, re­
duced to unitary norm. Thus, it measures the cosine of the angle between the 
vectors. The normalized product is maximum (-f-1) when the two vectors are 
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co-linear and have the same direction, i.e., the ratio between the respective 
components is a positive constant: X = aY^ with a > 0. In the general case, 
the normalized product is minimum (-1) when the two vectors are co-linear, 
but have opposed directions: X = aY, with a < 0. However, since feature 
vectors associated with software components count the number of references 
to each feature in each component, the coordinate values are always non neg­
ative and the normalized product is correspondingly always greater than or 
equal to zero. Thus, the minimum value of the normalized product is not -1 
for the feature vectors we are interested in. Such a minimum, equal to 0 under 
the hypothesis of non negative coordinates, is obtained when the two vectors 
are orthogonal with each other, that is, when non-zero values occur always 
at different coordinates. In other words, two vectors with non negative coor­
dinates have zero normalized product if the first has zeros in the positions 
where the second has positive values, and vice-versa. 

Association coefficients are used to compute various different similarity 
metrics, among which the Jaccard, the Simple Matching, and the S0rensen-
Dice similarities. These coefficients are based on a view of the feature vectors 
as the characteristic function of sets (of features). Thus, the first coefficient, 
a, measures the number of features that are common to the two vectors X 
and y , i.e., the intersection between the sets of features represented in the 
two feature vectors. Coefficients b and c measure the number of features in 
the first (second) set but not in the second (first). Coefficient d measures the 
number of features that are neither in X nor in Y ( ^ is the set of all features). 

Given the four association coefficients, several similarity metrics can be 
defined, based on them. For example, the Jaccard similarity metric counts 
the number of common features a over the total number of features in the two 
vectors (a-\-b-{-c). It is 1 when X and Y have exactly the same features, while 
it is 0 when they have no common feature. The Simple Matching similarity 
metric gives equal weight to the common (a) and to the missing {d) features. 
This metric is equal to 1 when two vectors have the same common and missing 
features, i.e., coefficients b and c are zero. In other words, no feature exists 
which belong to one vector but not to the other. The Simple Matching metric 
is zero when each feature belongs exclusively to the first or to the second 
vector (no common and no commonly missing feature). Finally, the S0rensen-
Dice similarity metric is a variant of the Jaccard metric, in which the common 
features are counted twice, because they are present in both vectors. 

In the literature, several different clustering algorithms have been investi­
gated [99], with different properties. Among them, hierarchical algorithms are 
the most widely used in software clustering. Hierarchical algorithms do not 
produce a single partition of the system. Their output is rather a tree, with 
the root consisting of one cluster enclosing all entities, and the leaves consist­
ing of singleton clusters. At each intermediate level, a partition of the system 
is available, with the number of clusters increasing while moving downward 
in the tree. 
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Hierarchical algorithms can be divided into two families: divisive and ag-
glomerative algorithms. Divisive algorithms start from the whole system at 
the tree root, and then divide it into smaller clusters, attached as children of 
each tree node. On the contrary, agglomerative algorithms start from singleton 
clusters and join them together incrementally. 

1 create N singleton clusters, one per feature vector 
2 while there are > 1 clusters do 
3 compute the similarity between each pair of clusters 
4 find the clusters with highest similarity 
5 merge these clusters into a new cluster 
6 end while 

Fig. 7.2. Agglomerative clustering algorithm. 

Fig. 7.2 shows the main steps of the agglomerative clustering algorithm. 
After creating a singleton cluster for each feature vector, the algorithm merges 
the most similar clusters together, until one single cluster is produced. It will 
be the root of the resulting clustering hierarchy. 

A critical decision in the implementation of this algorithm is associated 
to step 3. While it is obvious how similarity between singleton clusters is 
measured, since it just accounts for applying the metric chosen among those 
presented above, the similarity between clusters that contain more than one 
entity can be computed in different, alternative ways. Given two clusters Ci 
and C2, containing respectively n and m entities, their similarity is computed 
from the similarities (si^i,..., Sij,..., Sn,m) between each pair of contained en­
tities, according to so-called linkage rules. Among the linkage rules reported 
in the literature, the most widely used in software clustering are the single 
linkage and the complete linkage: 

Single linkage (or closest neighbor): 
s = maxjj {sij) 

C o m p l e t e linkage (or furthest neighbor): 
s = mini J (sij) 

Single linkage is known to give less coupled clusters, while complete linkage 
gives more cohesive clusters (with cohesion measuring the average similarity 
between any two entities clustered together, and coupling measuring the av­
erage similarity between any two entities belonging to different clusters). 

Since feature vectors tend to be sparse, couphng naturally tends to be low. 
As a consequence, more importance is typically given to cohesion, so that the 
complete linkage is the typical rule of choice. 

An alternative approach to computing the similarity between clusters is 
offered by the combined clustering algorithm [70]. In this approach, clusters 
are also associated with feature vectors that describe them. Initially, singleton 
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clusters have a feature vector that is coincident with that of the enclosed entity. 
Then, when a cluster contains n feature vectors, Xi , . . . ,X^ , its own feature 
vector is given by their sum: Xi -\- ... -\- Xn- Thus, a cluster is associated to 
a feature vector with each coordinate given by the sum of the values of the 
same coordinate in all contained vectors. 

cut point 

cut point 

^ 

packl I 

msE 
pack2 

pack3 pack4 

pack3 I 

ELums 
papk4 I 

Em 

Fig. 7.3. Clustering hierarchy (left), with two cut points selected, and associated 
package diagram (right). 

When hierarchical clustering is applied for package diagram recovery, a 
partition of the classes can be obtained by cutting the hierarchy at an ap­
propriate height (see Fig. 7.3). Successive cuts at different heights can be 
generated and assessed. Higher level cuts followed by lower level cuts indicate 
the cases where packages contain sub-packages. Lower level cuts eventually 
define packages that contain only classes. 

With reference to Fig. 7.3, two cut points have been selected in the cluster­
ing hierarchy. The topmost cut defines a package containing two other pack­
ages, and a package containing 3 classes. The lower level cut in turn defines 
the content of the two packages that are merged at the higher level cut. 

Problems that may occur when clustering is applied to software compo­
nents, such as the classes, are the generation of a black hole, in which one 
cluster absorbs everything incrementally, while moving upward in the hier­
archy, or, at the other extreme, the generation of a gas cloud, in which all 
singleton clusters tend to remain almost unchanged until the final grouping 
into a single final cluster [4]. Careful selection of the features to use, of the 
similarity measure between vectors and of the clustering algorithm to apply 
allow avoiding such problems. 

7.2.2 Modularity Optimization 

The approach to clustering based on modularity optimization [54] focuses on 
the relationships that hold among the entities to be clustered, rather than 
their features. In this setting, the goal of clustering is optimizing the level of 
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modularity, so that the resulting grouping of the entities concurrently mini­
mizes coupling (i.e., the connections between components of distinct clusters) 
while maximizing cohesion (i.e., the connections between components in a 
same cluster). 

When this approach is applied to package diagram recovery, the relation­
ships that hold among the classes have to be taken into account. The alter­
native choices span across those represented in the class diagram: 

• Inheritance. 
• Association. 
• Aggregation. 
• Composition. 
• Dependency. 

All or a subset of them can be used for clustering. As discussed below, it 
may be important to be able to give different relationships different weights. 

Given a set of entities (classes, in case of package diagram recover) and of 
relationships (inter-class relationships), cohesion and coupling can be formally 
defined as follows: 

Cohesion: Ai = ^ 

Coupling: Eij = ^ ^ 

where fii is the number of relationships internal to cluster C^, €ij is the num­
ber of relationships between clusters Ci and Cj , and Ni is the number of 
entities inside cluster Ci. If auto-loops cannot occur in the relationships being 
considered, the denominator of Ai becomes Ni{Ni — 1). 

Ai and Eij range between 0 and 1. yl̂  is 1 when the entities in cluster Ci 
are fully connected with each other (/Xj = Nf with auto-loops, /ij = Ni{Ni — 1) 
without auto-loops), while it is 0 when they are completely disconnected. Eij 
is equal to 1 when each entity of cluster Ci is connected to each entity of 
cluster Cj and vice-versa. Eij is 0 when the entities in Ci and Cj have no 
connection with each other. 

A joint measure of the modularization quality, MQ, can be obtained as 
the difference between the normalized total cohesion and the normalized total 
coupHng: 

z = l 2 *=1 j=i-\-l 

where k is the number of clusters. Since Ai is between 0 and 1, the sum over 
all clusters will be between 0 and k, hence the normalizing denominator of 
the first term in MQ. As regards the sum of Eij over all pairs of different 
clusters, the maximum will be k{k — l ) / 2 , i.e., equal to the number of such 
pairs. This number is used to normalize the second term in MQ^ so as to make 
it range between 0 and 1. 
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As a consequence of the normalization of the sums, MQ is bounded be­
tween -1 (no cohesion, maximum couphng) and 1 (no coupHng, maximum 
cohesion). The latter situation is of course the most desirable one. Thus, the 
clustering algorithm based on the modularity metric MQ aims at determining 
the partition of the entities into clusters that maximizes MQ. 

The problem of clustering has been turned into a combinatorial optimiza­
tion problem. Consequently, the heuristics available from the field of combi­
natorial optimization can be used to approximate the optimal solution. The 
exact optimal solution is in general non computable, since the number of pos­
sible partitions for which MQ should be determined grows exponentially with 
the number of entities to be clustered. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

5-f- {ei,...,e„} 
P •<— GenerateRandomPartition(5) 
repeat 

BNP 4r- BetterNeighboringPartitions(P) 
if BNP i^ 0 

P f- SelectRandomly(5ArP) 
end if 

until P does not change 

Popt <- P 

where ei, ...,e„ are the entities to be clustered. 

Fig. 7.4. Hill-climbing clustering algorithm. 

In the literature, several algorithms have been investigated to determine 
the clusters that maximize MQ [32, 54]. Fig. 7.4 shows a simple algorithm, 
based on the hill-climbing technique. It exploits the notion of neighbor parti­
tion. A partition NP is a neighbor of a partition P if it is the same as P except 
for a single element that belongs to different clusters in the two partitions. 
Initially, a random partition P is produced out of the set S of the entities to 
be clustered (line 2, Fig. 7.4). Then, an optimization loop is entered, which 
ends when the chosen strategy is unable to further improve the current parti­
tion of the entities. At line 4, a subset of all neighboring partitions, consisting 
of those with a higher MQ than P , is determined and assigned to BNP^ If 
at least one better neighbor partition actually exists, P is reassigned (fine 
6). When more than one improvement directions are possible, one is chosen 
randomly. In the end, a (sub-)optimal partitioning of the entities is produced 
which can be interpreted as the package diagram being recovered from the 
inter-class relationships. 

The main hmitation of the algorithm in Fig. 7.4 is that its result is quite 
sensitive to the initial, random partition, from which optimization is started. 
This can be (partially) mitigated by executing it several times, starting from 
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different initial partitions. More sophisticated methods (e.g., based on genetic 
algorithms) to cope with this problem can be found in the literature. 

When a large software system is analyzed, the number of clusters in the 
(sub-)optimal partition may be big. In this case, it makes sense to cluster 
the clusters, thus creating a hierarchy of packages. The first step consists of 
applying the modularization algorithm to the set of all the entities, which 
are assigned to different clusters. A new higher-level graph is then built by 
treating each cluster as a single entity. Given two nodes in this higher-level 
graph, if there exists at least one edge between any two enclosed entities, 
then there is an edge between the higher-level nodes in the new graph. The 
clustering algorithm is re-applied to the new graph, in order to discover the 
next higher-level graph, and so on, until all components have coalesced into a 
single cluster. 

Symmetrically, when the clusters obtained by the optimization of MQ 
contain a large number of entities, it makes sense to re-apply the clustering 
algorithm inside each higher-level cluster, until groupings of entities of man­
ageable size are produced. The hierarchy of the packages is obtained as an 
effect of clustering re-computation within previously determined clusters. 

The algorithm described above needs be improved in cases where not only 
the existence of a relationships is important, but also the number of instances 
of the relationship and the kind of relationship matter. This is especially true 
with Object Oriented systems. For example, the presence of an inheritance 
relationship between two classes may be a stronger indicator of the fact that 
the two related classes should belong to a same package, than the existence 
of a dependency due to a method call. Thus, inheritance should be weighted 
more than dependency. Moreover, the fact that a high number of method calls 
exists between two classes should result in a stronger relationship than in the 
case of a small number of calls. 

Therefore, the technique described above has to account for the so-called 
interconnection strength of the relationships: a proper weighting mechanism 
must be defined for the inter-class relationships, according to the number of 
instances and/or the kind of relationships being considered. 

7.3 Concept Analysis 

Concept analysis [25] is a branch of lattice theory that permits grouping ob­
jects that have common attributes. Concept analysis has been successfully 
applied to code restructuring and modularization [24, 50, 71, 75, 88, 94], with 
functions as the objects, and properly selected function properties as the at­
tributes (e.g., accesses to global variables, accesses to dynamic locations and 
presence of user-defined structured types in the signature, including the re­
turn types). A few survey papers [78, 79, 82] account for the applications of 
concept analysis to software engineering in general. 
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The possibility to use concept analysis for package diagram recovery de­
scends from its ability to determine maximal groupings of objects sharing 
maximal subsets of common attributes. In this application of concept anal­
ysis, the objects to be considered are the classes of the program, while the 
attributes are selected among the class properties. The choice of which prop­
erties to include in the analysis is quite important and may lead to different 
results. Examples of class properties that are highly related to the cohesion 
that packages are expected to exhibit are the following: 

• User defined types used in the declarations of class attributes, method 
parameters, return values, and/or local variables. 

• Method calls. 
• Relationships a class has with other classes (aggregation, inheritance, etc.). 

• Informal properties such as words in method identifiers, comments, etc. 

The output of concept analysis represents a candidate package diagram 
for the given program, in that classes are grouped together when they share 
maximal sets of properties. For example, classes operating on the same, user 
defined types, calling the same methods, related to the same classes, or in­
cluding the same descriptive information, are likely to be a cohesive group 
that can be possibly interpreted as a package of the system. 

The starting point for concept analysis is a context {0,A,R), consisting 
of a set of objects O, a set of attributes A and a binary relation R between 
objects and attributes, stating which attributes are possessed by each object. 

Let X C O and Y C A. The mappings a{X) = {a G A|Vo e X : {o,a) e 
R} (the common attributes of X) and T{Y) = {O e 0|Va G Y : (o, a) € 
R} (the common objects of Y) form a Galois connection^ that is, these two 
mappings are antimonotone and extensive. 

A concept is a maximal collection of objects that possess common at­
tributes, i.e., it is a grouping of all the objects that share a common set of 
attributes. More formally a concept is a pair of sets {X, Y) such that: 

X = {oe 0|Va eY :{o,a)eR} = r{Y) 

Y = {ae A\yo eX :{o,a)eR} = cr{X) 

X is said to be the extent of the concept and Y is said to be the intent. 
The definition given above is mutually recursive {X is defined in terms of 

Y and vice-versa), thus it cannot be used in a constructive way (it just helps 
deciding if a pair (X, Y) is or is not a concept). However, several algorithms 
for computing the concepts from a given context are available (see below). 

A concept CQ = {XQ, YQ) is a subconcept of concept ci = (Xi, Yi) (CQ < ci) 
if XQ C XI (or, equivalently, Yi C YQ). The subconcept relation forms a 
complete partial order (the concept lattice) over the set of concepts [25]. 
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The fundamental theorem for concept lattices [25] relates subconcepts and 
superconcepts as follows: 

Ui^,{Xi,Y}) = {T{f]Yi),f]Yi) 
iei iei 

The least upper bound {supremum) of a set of concepts (join operation) 
can be computed by intersecting their intents and finding the common objects 
of the resulting intersection. Dually, the largest lower bound {infimum) can 
be computed as follows: 

ni^jiXi,Yi) = {f]Xi,aif]Xi)) 
iei iei 

The steps of a simple bottom-up concept construction algorithm (see [75]) 
are the following: 

1. Compute the bottom element of the concept lattice: (r(cr(0)), cr(0)), with 
a(0) = A. 

2. Compute the atomic concepts - smallest concepts with extent obtained 
by treating each object as a singleton: (r((7({o})),a({o})),o G O 

3. Close the set of atomic concepts under join (AtomicConceptClosure). 

The procedure AtomicConceptClosure, which computes the transitive 
closure of the atomic concepts under the least upper bound (join) relationship, 
is given in Fig 7.5. 

AtomicConceptClosure | 
1 
2 
3 
4 
5 
6 
7 
•8 

9 
10 
11 
12 

worklist <r- {(c',c)|c ^ c' A c' ^ c} 
while worklist 7̂  0 

(co,ci) <r- RemoveFirst(worklist) 

f = coUci \ 
if c" is yet to be discovered 

for each pairs of concepts (c", c) 
if c ^ c" A c " ^ c 

Add(worklist, {c",c)) 
end if 

end for 
end if 

end while 

Fig. 7.5. Bottom-up concept formation algorithm. Procedure AtomicConcept­
Closure. 

A worklist is initialized with all pairs of concepts that are not sub concepts 
of each other (line 1). Then, the formation of superconcepts is tried, as long 
as there are pairs of concepts to consider in the worklist. Each such pair gives 
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raise to a unique supremum, computed at line 4. If such a concept has not 
yet been discovered, it is added to the Ust of known concepts (not shown) 
and it is compared with all concepts produced so far. For each concept that 
is unrelated with the new one (line 7), a pair is generated and added to the 
worklist. In the end, the transitive construction of all superconcepts, starting 
from the atomic concepts, gives the final set of all the concepts, organized into 
the concept lattice. 

The key observation for using concept analysis in package diagram recovery 
is that a package corresponds to a formal concept. Let us consider, for example, 
the method calls issued inside the code of the classes under analysis. A concept 
consists of a set of classes performing a set of same method calls, which are 
not simultaneously made by the code of any other class outside the concept. 

A7] 
A2\ 

M 

m i 

X 

X 

X 

7712 

X 

X 

7713 

X 

Table 7.1. Example of context: the objects are the classes Ai,A2,A^ and the 
attributes are the calls to methods 7711,7712,7773. 

An example of such kind of context is given in Table 7.1. The set of objects 
consists of the three classes ^ 1 , ^ 2 , ^ 3 , and the attributes are the calls to 
methods 7711,7712,7̂ 13. Table 7.1 indicates which class invokes which method. 
After applying concept analysis to this example, the following concepts are 
identified: 

• ci = {{Ai,A2,A2,],{mi}) 
• C2 = {{Ai,A2},{mi,m2]) 
• C3 = ({^3},{mi,77l3}) 
• ^4 = ({}, {mi,7712,7713}) 

Concept c\ indicates that all the three classes call method 7ni. Concept C2 
states that both Ai and A2 call both r?7i and 7712. A3 is the only class c^hing 
both m\ and 7713 (concept C3), while no class has the property of calling all 
three methods (C4). 

The concept lattice associated with the concepts ci , . . . , C4 above is depicted 
in Fig. 7.6 (nodes have the shape used in package diagrams). Edges indicate 
the subconcept relationships and are upward directed. Inside each concept 
(package), the names of the classes that have been grouped together are shown, 
while the related attributes are not indicated. 

Concepts are good candidates for the organization of classes into packages. 
In fact, each concept is, by definition, characterized by a high cohesion of its 
objects around the chosen attributes. However, concepts may have extents 
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Package_diagram_ I_ 

Fig. 7.6. Example of concept lattice, showing the candidate packages. 

with non-empty intersections. Correspondingly, not every collection of con­
cepts represents a potential package diagram. To address this problem, the 
notion of concept partition was introduced (see for example [75]). A concept 
partition consists of a set of concepts whose extents are a partition of the 
object set O. CP = {(Xi, Y i ) , . . . , {Xn, Yn)} is a concept partition iff. 

[jXi = 0 and \fi i- j , Xi O X̂ - = 0 

A concept partition allows assigning every class in the considered context 
to exactly one package. In the example discussed above, the two following 
concept partitions can be determined (see dashed boxes in Fig. 7.6): 

• C P i - { c i } 
• CP2 = {C2,C3} 

The first partition contains just one concept, ci, and corresponds to a 
package diagram with all three classes Ai, A2, A3 in the same package, on the 
basis of their shared call to vn\. The second partition generates a proposal 
of package organization in which A\ and A^ are inside a package, since they 
call both m\ and 777-2, while A3 is put inside a second package for its calls to 
mi and 7773. It should be noted that the second package organization permits 
a violation of encapsulation, since classes of different packages have a shared 
method call, namely to mi . It ensures that no class outside C2 invokes both mi 
and m2, while mi alone can be invoked outside C2. This example gives a deeper 
insight into the modularization associated with a concept partition: even in 
cases in which the only package diagram that does not violate encapsulation is 
the trivial one, with all the classes in one package, concept analysis can extract 
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alternative organizations of the packages into cohesive units, that occasionally 
are allowed to violate encapsulation. 

It might be the case that no meaningful concept partition is determined 
out of the initial context, although each concept, taken in isolation, represents 
a meaningful grouping of classes into a package. In this situation, the package 
organization indicated by the concepts can be taken into account by relaxing 
the constraint on the concept partitions. One way to achieve this result is 
described in [88], and consists of determining concept sub-partitions, instead 
of concept partitions, that can be eventually extended to a full partition of 
the set of classes under analysis. 

7.4 The eLib Program 

The eLib program is a small application consisting of just 8 classes. Thus, 
it makes no sense to organize them into packages. However, the exercise of 
applying the package diagram recovery techniques to the eLib program may 
be useful to understand how the different techniques work in practice and how 
their output can be interpreted. 

Algorithm 

Agglom. 

Agglom. 

Mod. opt. 

Mod. opt. 

j Concept 

Feat./rel. 

Types 

Calls 

CI. diag. 

Calls 

Types 

Partition 

{Book} {InternalUser} {Journal, TechnicalReport} 
{User, Document, Library, Loan} 

{InternalUser} {Book, Journal, TechnicalReport} 
{User, Document, Library, Loan} 

{Book} {InternalUser} {Journal} {TechnicalReport} 
{User, Document, Loan} {Library} 

{Book} {InternalUser} {Journal} {TechnicalReport} 
{User, Document, Library, Loan} 

{Book} {InternalUser} {Journal, TechnicalReport} 
{User, Document, Library, Loan} 

Table 7.2. Class partitioning produced by different package diagram recovery al­
gorithms. 

Table 7.2 summarizes the results obtained by the agglomerative cluster­
ing method (first two hues, labeled Agglom.), by the modularity optimization 
method (lines 3 and 4, labeled Mod. opt.), and by concept analysis (last line, 
labeled Concept). The second column contains the kind of features or rela­
tionships that have been taken into account (a detailed explanation follows). 
The last column gives the resulting package diagram, expressed as a partition 
of the set of classes in the program. 

In the application of the agglomerative clustering algorithm, two kinds of 
feature vectors have been used. In the first case, each entry in the feature 
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Class 
Library 
Loan 
Document 
Book 
Journal 
TechnicalReport 
User 
InternalUser 

Feature vector 

<0, 5, 12, 0, 0, 0, 10, 0> 
<0, 1, 3, 0, 0, 0, 3, 0> 
<0, 2, 1, 0, 0, 0, 3, 0> 
<0, 0, 0, 0, 0, 0, 0, 0> 
<0, 0, 0, 0, 0, 0, 1, 0> 
<0, 0, 0, 0, 0, 0, 1, 0> 
<0, 3, 1, 0, 0, 0, 1, 0> 
<0, 0, 0, 0, 0, 0, 0, 0> 

Table 7.3. Feature vectors based on declared variable types. 

vector represents any of the user defined types (i.e., each of the 8 classes in 
the program). The associated value counts the number of references to such 
a type in the declarations of class attributes, method parameters, local vari­
ables or return values. Table 7.3 shows the feature vectors based on the type 
information. The types in each position of the vectors read as follows: 

<Library, Loan, Document, Book, J o u r n a l , TechnicalReport , User, 
In te rna lUser> 

It should be noted that the feature vectors for classes Book and I n t e r n a l -
User are empty. This indicates that the chosen features do not characterize 
these two classes at all, and consequently they do not permit grouping these 
two classes with any cluster. 

point 

Book InternalUser Journal TechnicalReport User Document Library Loan 

Fig. 7.7. Clustering hierarchy for the eLib program (clustering method Agglom-
Types). 
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Fig. 7.7 shows the clustering hierarchy produced by the agglomerative 
algorithm applied to the feature vectors in Table 7.3. The (manually) selected 
cut point is indicated by a dashed line. The results shown in the first line of 
Table 7.2 correspond to this cut point. Classes User, Document, L ib ra ry , 
Loan are clustered together. So are Jou rna l , TechnicalReport , while Book 
and In te rna lUser remain isolated, due to their empty description. 

The agglomerative clustering algorithm was re-executed on the eLib pro­
gram, with different feature vectors. The number of invocations of each 
method is stored in the respective entry of the new feature vectors. Thus, for 
example, the first component of the feature vectors, associated with method 
User.getCode, holds value 1 for classes Document, L ib ra ry , Loan, in that 
they contain one invocation of such a method (resp. at lines 220, 10, 152), 
while such an entry contains a zero in the feature vectors for all the other 
classes, which do not call method getCode of class User. 

The class partition obtained by cutting the clustering hierarchy associated 
with these feature vectors is reported in the second line of Table 7.2. Now the 
two classes Book and In te rna lUser have a non empty description, so that they 
can be properly clustered. The resulting package diagram is the same that was 
produced with the feature vectors based on the declared variable types, except 
for class Book, which is aggregated with {Journal , TechnicalReport}. 

Fig. 7.8. Inter-class relationships considered in the first application of the modu­
larity optimization method. 

The clustering method that determines the partition optimizing the Mod­
ularity Quality (MQ) measure depends on the inter-class relationships being 
considered. Two kinds of such relationships have been investigated: (1) those 
depicted in the class diagram reported in Fig. 3.9 (i.e., inheritance, association 
and dependency); (2) the method calls. 

Fig 7.8 shows the inter-class relationships considered in the first case. 
Given the low number of classes involved, an exhaustive search was conducted 
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to determine the partition which maximizes MQ. The result is the partition 
in the third Une of Table 7.2 (see also the box in Fig 7.8). It corresponds to a 
value of MQ equal to 0.91 and it was obtained by giving the same weight to 
all kinds of relationships. Actually, giving different weights to different kinds 
of relationships does not change the result, as long as the ratios between the 
weights remains small enough (less than 5). Big ratios between the weights 
lead to an optimal MQ reached when all classes are in just one cluster. 

Fig. 7.9. Call relationships considered in the second application of the modularity 
optimization method. 

In the second case (call relationships), the optimal partition is associated 
with MQ = 0.87, and it differs from the previous one only for the position 
of class Library, which is merged with {User, Document, Loan} (see Ta­
ble 7.2). Call relationships considered in this second clustering based on MQ 
are weighted by the number of calls issued within each class. Thus, the call 
relationship between Loan and User is weighted 3 because there are three 
invocations of methods belonging to class User, issued from methods of class 
Loan (resp. at hues 148, 152, 153). Fig. 7.9 shows the weighted call relation­
ships considered in this second application of the modularity optimization 
method (the only non-singleton cluster is surrounded by a box). 

Finally, concept analysis was applied to the context that relates the classes 
to the declared type of attributes, method parameters and local variables (see 
Table 7.4). Classes Book and InternalUser have been excluded, since they do 
not declare any variable of a user-defined type (see discussion of the feature 
vectors in Table 7.3 given above). Two concepts are determined from such a 
context: 

Ci = ({User, Document, Library, Loan}, {User, Document, Loan}) 
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Class 

Library 

Loan 

Document 

Journal 

TechnicalReport| 

User 

Type 
|LocLn 

1 ̂  
1 ̂  
1 ̂  

1 ̂  

Document 

X 

X 

X 

X 

User 

X 

X 

X 

X 

X 

X 

Table 7.4. Each class is related to the user-defined types that appear in its decla­
rations. 

C2 = ({User, Document, L ib ra ry , Loan, Jou rna l , TechnicalRepor t} , 
{User}) 

Although no concept partition emerges, it is possible to partition the 
classes based on the two concepts ci and C2, by considering all classes in 
the extent of ci as one group, and all classes in the extent of C2 but not in 
the extent of ci as a second group. The associated class partition is reported 
in the last line of Table 7.2. 

Different techniques and different properties have been exploited to recover 
a package diagram from the source code of the eLib program. Nonetheless, the 
results produced in the various settings are very similar with each other (see 
Table 7.2). They differ at most for the position of one or two classes. A strong 
cohesion among the classes User, Document, Loan was revealed by all of the 
considered techniques. Actually, these three classes are related to the over­
all functionality of this application that deals with loan management Even 
if different points of view are adopted (the relationships among classes, the 
declared types, etc.), such a grouping emerges anyway. The eLib program 
is a small program that does not need be organized into multiple packages. 
However, if a package structure is to be superimposed, the package diagram 
recovery methods considered above indicate that a package about loan man­
agement containing the classes User, Document, Loan could be introduced. 
The class diagram of the eLib program (taken from Fig. 1.1) with such a 
package structure superimposed is depicted in Fig. 7.10. 

7.5 Related Work 

The problem of gathering cohesive groups of entities from a software system 
has been extensively studied in the context of the. identification of abstract 
data types (objects), program understanding, and module restructuring, with 
reference to procedural code. Some of these works [13, 51, 102] have already 
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Loan management 

Library 

addUser(user: User): boolean 
removeUser(userCode: int): boolean 
addDocument(doc: Document): boolean 
removeDocument(docCode: int): boolean 
borrowDocument(user: User, doc: Document): boolean 
returnDocument(doc: Document): boolean 
searchUser(name: String): List 
searchDocumentByTitle(title: String): List 
searchDocumentByAuthors(authors: String): List 
searchDocumentBylSBN(isbn: String): int 

User 

userCode: int 
fullName: String 
address: String 
phoneNumber: String 

authorizedUser(): boolean 
printlnfoO 

• 7 ^ 

Document 

documentCode: int 
title: String 
authors: String 
ISBNCode: String 

isAvailable(): boolean 
authorizedLoan(user: User): boolean 
printlnfoO 
printAvailabilityO 

^ ^ ^ 

InternalUser 

internalld: String 

authorizedUserQ: boolean [ authorizedLoan(user: User): kwolean 

Technical Report 

refNo: String 

authorizedLoan(user: User): boolean 

Fig. 7.10. Package diagram for the eLib program. 

been discussed in Chapter 3. Others [4, 52, 54, 91, 99] are based on variants 
of the clustering method described above. 

Atomic components can be detected and organized into a hierarchy of 
modules by following the method described in [26]. Three kinds of atomic 
components are considered: abstract state encapsulations, grouping global 
variables and accessing procedures, abstract data types, grouping user de­
fined types and procedures with such types in their signature, and strongly 
connected components of mutually recursive procedures. Dominance analysis 
is used to hierarchically organize the retrieved components into subsystems. 

Some of the approaches to the extraction of software components with high 
internal cohesion and low external coupling exploit the computation of soft­
ware metrics. The ARCH tool [73] is one of the first examples embedding the 
principle of information hiding, turned into a measure of similarity between 
procedures, within a semi-automatic clustering framework. Such a method 
incorporates a weight tuning algorithm to learn from the design decisions 
in disagreement with the proposed modularization. In [11, 22] the purpose 
of retrieving modular objects is reuse, while in [61] metrics are used to re­
fine the decomposition resulting from the application of formal and heuristic 
modularization principles. Another different application is presented in [46], 
where cohesion and coupling measures are used to determine clusters of pro-
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cesses. The problem of optimizing a modularity quality measure, based on 
cohesion and coupling, is approached in [54] by means of genetic algorithms, 
which are able to determine a hierarchical clustering of the input modules. 
Such a technique is improved in [55] by the possibility to detect and properly 
assign omnipresent modules, to exploit user provided clusters, and to adopt 
orphan modules. In [53] a complementary clustering mechanism is applied to 
the interconnections, resulting in the definition of tube edges between subsys­
tems. Usage of genetic algorithms in software modularization is investigated 
also in [32], where a new representation of the assignment of components to 
modules and a new crossover operator are proposed. 

Other relevant works deal with the application of concept analysis to 
the modularization problem. In [24, 45, 77] concept analysis is applied to 
the extraction of code configurations. Modules associated with specific pre­
processor directive patterns are extracted and interferences are detected. 
In [50, 71, 75, 84, 94], module recovery and restructuring is driven by the 
concept lattice computed on a context that relates procedures to various 
attributes, such as global variables, signature types, and dynamic memory 
access. 

The main difference between module restructuring based on clustering and 
module restructuring based on concepts is that the latter gives a characteri­
zation of the modules in terms of shared attributes. On the contrary, modules 
recovered by means of clustering have to be inspected to trace similarity values 
back to their commonalities. 

Module restructuring methods based on concepts suffer from the difficulty 
of determining partitions, i.e., non overlapping and complete groupings of 
program entities. In fact, concept analysis does not assure that the candidate 
modules (concepts) it determines are disjoint and cover the whole entity set. 
In the approach proposed in [88], such a problem is overcome by using concept 
subpartitions, instead of concept partitions, and by providing extension rules 
to obtain a coverage of all of the entities to be modularized. 
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Conclusions 

This chapter deals with the practical issues related to the adoption of reverse 
engineering techniques within an Object Oriented software development pro­
cess. Tool support and integration is one of the main concerns. This chapter 
contains some considerations on a general architecture for tools that imple­
ment the techniques presented in the previous chapters. A survey of the exist­
ing support and of the current practice in reverse engineering is also provided. 

Once an automated infrastructure for reverse engineering is in place, the 
process of software evolution has to be adapted so as to smoothly integrate 
the newly oflPered functionalities. This accounts for revising the main activities 
in the micro-process of software maintenance. The kind of support offered to 
program understanding has been already described in detail (see Chapter 1, 
eLib example). The way other activities are affected by the integration of a 
reverse engineering tool in the development process are described in this chap­
ter, by reconsidering the eLib program and the change requests sketched in 
Chapter 1. Location of the changes in the source code, change implementation 
and assessment of the ripple effects are conducted on the eLib program, using, 
whenever possible, the information reverse engineered from the code. 

A vision of the software development process that could be realized by 
exploiting the potential of reverse engineering concludes the chapter. The op­
portunities offered by new programming languages and paradigms for reverse 
engineering are outlined, as well as the possibility of integration with emerging 
development processes. 

This chapter is organized as follows: Section 8.1 describes the main mod­
ules to be developed in a reverse engineering tool for Object Oriented code. 
Reverse engineered diagrams can be exploited for change location and imple­
mentation, as well as for change impact analysis. Their usage with the eLib 
program is presented in Section 8.2. The authors' perspectives on potential 
improvements of the current practices are given in Section 8.3, with reference 
to new programming languages and development processes. Finally, related 
works are commented in the last section of the chapter. 
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8.1 Tool Architecture 

Implementation of the algorithms described in the previous chapters is affected 
by practical concerns, such as the target programming language, the available 
libraries, the graphical format of the resulting diagrams, etc. However, it is 
possible to devise a general architecture to be instantiated in each specific 
case. In this architecture, functionalities are assigned to different modules, so 
as to achieve a decomposition of the main task into manageable, well-defined 
sub-tasks. In turn, each module requires a specialization that depends on the 
specific setting in which the actual implementation is being built. 

Diagrams 

Object 
Flow 
Graph 

Fig. 8.1. General architecture of a reverse engineering tool. 

Fig. 8.1 shows the main processing steps performed by the modules com­
posing a reverse engineering tool. The first module, Parser, is responsible 
for handling the syntax of the source programming language. It contains the 
grammar that defines the language under analysis. It parses the source code 
and builds the derivation tree associated with the grammar productions. A 
higher-level view of the derivation tree is preferable, in order to decouple suc­
cessive modules from the specific choices made in the definition of the gram­
mar for the target language. Specifically, the intermediate non-terminals used 
in each grammar production are quite variable, being strongly dependent on 
the way the parser handles ambiguity (e.g., bottom-up and top-down parsers 
require very different organizations of the non-terminals). For this reason, it 
is convenient to transform the derivation tree into a more abstract tree rep­
resentation of the program, called the Abstract Syntax Tree (AST). In this 
program representation, chains of intermediate non-terminals are collapsed, 
and only the main syntactic categories of the language are represented [2]. 

The AST is a program representation that reflects the syntactic structure 
of the code. However, reverse engineering tools are based on a somewhat dif­
ferent view of the source code. In the remainder of this chapter, this view is 
referenced as the language model assumed by a reverse engineering tool. In a 
language model, several syntactic details can be safely ignored. For example, 
the tokens delimiting blocks of statements (curly braces, begin, end, etc.) 
are irrelevant, while the information of interest is the actual presence of a 
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sequence of statements. Thus, in the language model, tokens such as delim­
iters of statement blocks and parameters, separators in parameter lists and 
statement sequences, etc., are absent. On the other hand, information not 
explicitly represented in the AST is made directly available in the language 
model. For example, each variable involved in an expression is linked to its 
declaration. Each method call is resolved in terms of all the type-compatible 
definitions of the invoked method. Each class is associated with its super­
class, as well as the interfaces it implements. Such cross-references are not 
obtained by means of plain identifiers, as in the AST, but are links toward 
the referenced elements in the language model. For example, if class A extends 
class B, the AST for class A contains just a child node for the extends clause, 
leading to the identifier B, while in the language model an association exists 
between the model element for class A and the model element for class B. An 
example of (simplified) language model for the Java language is described in 
detail below. The module responsible for building the language model out of 
the AST of an input program is the Model Extractor (see Fig. 8.1). 

Based upon the language model of the input program, reverse engineering 
algorithms can be executed to recover alternative design views. The output is 
a set of diagrams to be displayed to the user. In some cases, a further abstrac­
tion of the language model that Reverse Engineering algorithms have in input 
is necessary. For example, most (but not all) of the techniques described in the 
previous chapters require that the data flows in the target Object Oriented 
program be abstracted into a data structure called the Object Flow Graph 
(OFG). Such a data structure is built internally into the Reverse Engineering 
module and is shared by all the algorithms that depend on it. Flow propaga­
tion of proper information inside the OFG leads to the recovery of the design 
views of interest. These are converted into a graphical format of choice, in 
order for the final user to be able to visualize them. 

8.1.1 Language M o d e l 

Since reverse engineering techniques span over a wide spectrum, depending 
on the kind of high-level information being recovered, it is quite important 
to design a general language model that supports all of the alternative algo­
rithms. In turn, each algorithm may have an internal representation of the 
source code, different from the language model itself. However, the main re­
quirement on the language model is that all the information necessary for the 
reverse engineering algorithms to work and (possibly) build their own internal 
data structures must be available in the language model. Thus, the language 
model plays a critical, central role in the architecture described above and 
should be designed very carefully. An example of such a model is given in 
Fig. 8.2 for the Java language. Only the most important entities are shown 
(for space reasons), with no indication of their properties. 

A Java source file contains the definition of classes within a name space 
called package. In turn, packages can be nested. Thus, the topmost entity 
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package q.^^q. class method 
body 

attribute 
conditional 

Fig. 8.2. Simplified Java language model. Containment and inheritance relation­
ships are shown. 

in the language model for Java (see Fig. 8.2, left) is the package and a self-
containment relationship in the package entity represents nesting. Eventually, 
packages contain classes (containment from package to class in Fig. 8.2). The 
main property of the entity package (not shown in Fig. 8.2) is its name, that 
uniquely identifies it. 

The properties of the entity class include the name, visibility, as well as its 
superclass, implemented interfaces, etc. The entities in turn contained inside 
classes are the class members. Thus, the entity class is connected to the entity 
attribute and to the entity method. Moreover, classes can be nested inside other 
classes. This is the reason for the self-containment outgoing from the entity 
class. 

The entity attribute has properties such as name, type, visibility, initializer, 
etc. Similarly, the entity method has properties such as name, formal param­
eters, return type, visibility, etc. The body of each method is represented as a 
sequence of statements in the language model (containment from method to 
statement labeled body in Fig. 8.2). 

Statements can be of diflFerent types. Some of them are enumerated in 
Fig. 8.2, connected to their abstraction statement by an inheritance relation­
ship. Conditional statements are used for constructs such as i f and switch. 
Among their properties, they hold a reference to the expression entity used 
in the tested condition (not shown in Fig. 8.2). The i f conditional statement 
has a then-part and an else-part, which are in turn sequences of statements 
(similarly to the body of a method). The switch statement is associated with 
a sequence of cases, each containing the respective statements to execute. 

Loop statements include while, for and do-while loops. Their main prop­
erties are the tested condition (an expression entity, not shown in Fig. 8.2) and 
the loop body (a sequence of statements). For loops have also an initializer 
and an increment part. 

Assignment statements have two main components, the left hand side and 
the right hand side. While the latter is a generic expression, the former must 
eventually reference a location. This is achieved by constraining it to a unary 
expression, instead of a generic expression. 



8.2 The eLib Program 159 

Call statements involve a dereference chain {primary expression), eventu­
ally leading to the object which is the target of the invocation. Other impor­
tant properties are the name of the called method, the actual parameter list 
(a list of expressions), and hnks toward all type-compatible methods in the 
language model. In the case of an invocation of a library method, the call is 
marked as library call. 

When the control flow inside a method is interrupted to return a value to 
the caller, a return statement is encountered. The main property of this entity 
is the expression that defines the returned value. 

Among the entities and relationships not shown in Fig. 8.2 for space rea­
sons, the most important one is the entity expression, accounting for all math­
ematical expressions supported by the language, possibly intermixed with 
method invocations. The sub-hierarchy of the expression entities closely re­
sembles that available in most programming languages (either procedural or 
Object Oriented). 

The information represented according to the model in Fig. 8.2 is sufficient 
to build the OFG for a given source code, as well as to conduct all other 
analyses that do not depend on the OFG and have been described in the 
previous chapters. Thus, it can be used as the basic representation exploited 
by all reverse engineering techniques implemented in the Reverse Engineering 
module. 

8.2 The eLib Program 

The change request for the eLib program, anticipated in Section 1.2, is recon­
sidered now that several design views have been recovered from the eLib code 
and are available for inspection. 

In summary, the modification to be implemented involves the following 
issues: 

• The program should support the reservation of books not available for loan 
(i.e., borrowed). 

• A document can be reserved by a user if it is currently borrowed by an­
other user and if no other user has already reserved it (one reservation per 
document only). 

• Permission to reserve a document follows the same policy used for the 
loans: only users that are authorized to loan a given document can reserve 
it when it is out. 

• When a reserved document is returned to the library, only the user who 
made the reservation can borrow it. 

• Reservations can be cleared at any time (both before and after a document 
is returned). 

The design diagrams extracted from the code in the previous chapters are 
used to locate the code portions to be changed and to define the approach to 
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implement the change, at a high level. Then, design diagrams are recovered 
from the new system, to assess the portions of the system actually impacted 
by the change. These are expected to be the main target of the testing activity 
to be conducted before releasing the new version of the program. 

8.2.1 C h a n g e Loca t ion 

Let us consider the class diagram depicted in Fig. l .L The class Loan is used 
to instantiate an association between a user and a document, that comes into 
existence each time a document is borrowed by a user. Such an association is 
objectified into instances of class Loan, which are stored inside the attribute 
locois of class Library, thus remaining accessible to the library. 

The role played by the class Loan in the class organization depicted in 
Fig. 1.1 is very similar to that required for the implementation of the reser­
vation mechanism. In fact, a reservation is an association between a user and 
a document, that comes into existence each time a document is reserved by 
a user. Moreover, the class Library needs to maintain a persistent list of the 
currently active reservations. To achieve this, the user-document association 
representing a reservation can be objectified, by instantiating a new class, that 
we will call Reservat ion. 

Similarly to class Loan, class Reservat ion has two stable references to­
ward classes User and Document, which implement the association between a 
user and a document, where the former is reserving the latter. Moreover, an 
attribute of class Library, which we will call r e s e r v a t i o n s , can be used to 
store the list of current reservations (objects of class Reservat ion) . 

From the short description given above, it is clear that the two classes Locin 
and Reserva t ion are very similar. Thus, it might be the case that a common 
abstraction can be defined, implementing the shared functionalities of these 
two classes. Inheritance of such functionalities would avoid their duplication 
in the two classes Loan and Reservat ion. 

The common mechanism shared by Loan and Reservat ion consists of the 
association between an object of class User and an object of class Document, 
implemented by means of two attributes referencing the two classes being 
associated and by means of a method to create such an association. Moreover, 
methods to access each participant in the association and to assess equality 
are expected to be also provided. We will call UserDocumentAssociation the 
class containing such common functionalities. Classes Loan and Reservat ion 
extends it and inherit these fuctionalities from it. 

The other classes in Fig. 1.1 are expected to be not affected by the change 
to be implemented. However, additions and modifications of existing data 
members may be necessary. For example, class Library must provide interface 
methods to reserve a document (reserveDocument) and to clear a reserva­
tion (c learReserva t ion) . In turn, the implementation of these methods may 
be based on private methods addReservation and removeReservation, de­
fined in classes Library, User and Document, with a role similar to that of 
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addLoan and removeLoan. Another convenience method that should be added 
is isReserved in class Document, which, similarly to i sAva i lab le , checks if a 
reservation was made for a given document (attribute r e s e r v a t i o n not null, 
similarly to attribute loan for i sAvai lab le ) A method i sReserv ing could 
play a similar role as isHolding in class Library. Other useful methods are 
related to the printing and searching facilities (e.g., p r i n t R e s e r v a t i o n in 
class Document). 

Let us consider the instances of the eLib classes, by looking at the static 
and dynamic object diagrams depicted in Fig. 1.2. Introduction of the reser­
vation mechanism would result in a new object, Reserva t ion l , representing 
all instances of class Reservat ion stored in the library, referenced through 
the attribute r e s e r v a t i o n s . 

Similarly to the objects Loan2 and LoanS, temporarily created by r e t u r n -
Document and isHolding, two temporary objects Reservat ion2 and Reserva­
t i o n s may be necessary in the implementation of c l ea rRese rva t ion and 
isReserving. 

Let us consider the interactions occurring when a document is borrowed 
(see Fig. 1.3). Given the parallel behavior of reservations and loans, a similar 
diagram is expected to hold for method reserveDociiment, with some slightly 
different checks (e.g., with i sAva i l ab le replaced by isReserved) and the 
same authorization controls. On the other side, the method borrowDocument 
itself is expected to be impacted by the change being implemented. In fact, 
if the document requested for loan is currently reserved, it can be borrowed 
only by the user who reserved it. In such a case, creation of the loan must 
include the deletion of the existing reservation. 

The original interaction diagram for the method returnDocument from 
class Library is shown in Fig. 1.4. The sequence of messages exchanged among 
the involved objects has the overall effect of deleting a Loan object, which is 
removed from the list stored in the Library and which becomes no longer 
referenced by the User and Document it was previously associated with. Such 
an operation is not affected by the introduction of a reservation mechanism. 
In fact, a loan is closed in the same way, regardless of the fact that the related 
document is reserved or not. It becomes available anyway after the loan is 
dropped. Thus, we expect that the sequence diagram in Fig. 1.4 remams 
unchanged in the new version of the eLib program. 

The state diagrams in Fig. 1.5, 1.6 are not affected by the change being 
implemented. In fact, the state of a User or a Document, in terms of the loan(s) 
they are associated with, continues to obey the dynamics represented in these 
diagrams. The same is true for the joint dynamics of the documents, users and 
loans referenced by a Library object (see Fig. 1.6). However, introduction of 
a new attribute, r e s e r v a t i o n s , in class Library , and of backward links from 
User, Document to Reservat ion, creates a demand for additional views of 
the states of User, Document and Library. For the latter, a joint description 
of loans and reservations may be useful to characterize the transitions allowed 
in each combined state. 
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User 

userCode: int 
fullName: String 
address: String 
phoneNumber: String 

authorizedUser(): boolean 
printlnfoO 

Library 

addUser(user: User): boolean 
removeUser(userCode: int): boolean 
addDocument(doc: Document): boolean 
removeDocument(docCode: int): boolean 
borrowDocument(user: User, doc: Document): boolean 
returnDocument(doc: Document): boolean 
resen/eDocument(user: User, doc: Document): boolean 
clearReservation(doc: Document): boolean 
searchUser(name: String): List 
searchDocumentByTitle(title: String): List 
searchDocumentByAuthors(authors: String): List 
searchDocumentBylSBN(isbn: String): int 

" 7 ^ 

Document 

documentCode: int 
title: String 
authors: String 
ISBNCode: String 

isAvailable(); boolean 
isReserved(): boolean 
authorizedLoan(user: User): boolean 
printlnfoO 
printAvailabilityO 
printReservationO 

internaild: String 

authorizedUserQ: boolean 

auttiorizedLoan(user: User): boolean 

Fig. 8.3. New class diagram for the eLib program. 

8.2.2 Impact of the Change 

After implementing the change request described above, all diagrglms pre­
sented in Chapter 1 have been recomputed. In the following text, they are 
commented, with the aim of identifying the main differences with respect to 
the original program. Such differences indicate which code portions have been 
affected by the change. This helps understanding the new organization of the 
application, but can also be useful in defining a test plan, where changed 
parts are exercised more extensively. Unexpected ripple ejffects may also come 
to light thanks to the assessment of the changes performed. 
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Fig. 8.4. Static (left) and dynamic (right) object diagram for the eLib program. 

Fig. 8.3 shows the new class diagram obtained after change implementa­
tion. As anticipated in the previous section, a class (UserDocumentAssocia-
t i on ) has been introduced to factor out all operations involved in the cre­
ation of an association between a user and a document. Classes Loan and 
Reservat ion (the latter is a new class) represent specific cases of User-
Document Associa t ion. 

Class Library stores the list of the active reservations inside its at­
tribute r e s e r v a t i o n s . Hence, the link from Library to Reservat ion la­
beled r e s e r v a t i o n s . User and document participating in a reservation pos­
sess a reference to the related Reservat ion object. In the class diagram, 
this is indicated by the association from User to Reservat ion (labeled 
r e s e r v a t i o n s ) and by the association from Document to Reservat ion (la­
beled r e s e r v a t i o n ) . 

Among the methods listed in the lower compartment of class Library, 
some new members are apparent in Fig. 8.3. For example, the method 
reserveDocument has been added, offering the functionalities to create a 
reservation of a document by a user. The method c l ea rRese rva t ion deletes 
the reservation associated with a given document doc (parameter of the 
method). Both of them return true upon successful completion of the op­
eration. 

In the class Document, among others, the method isReserved has been 
added, returning true when called onto reserved documents (i.e., documents 
with non-null r e s e r v a t i o n attribute). Information about any reservation pos­
sibly made on a document can be printed by calling the method p r i n t R e s e r -
va t i on from class Document. 

Let us consider the relationships that hold among the objects instanti­
ating the classes in Fig. 8.3. Fig. 8.4 shows the static and dynamic object 
diagrams recovered from the code of the modified application. The dynamic 
object diagram has been obtained from the execution of the following scenario: 
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Time Operation 
1 I An internal user is registered into the library. 
2 Another internal user is registered. 
3 A book is archived into the library 
4 Another book is archived. 
5 A journal is archived into the library. 
6 I The journal archived at time 5 is borrowed by the first 

registered user. 
The second registered user reserves the journal archived 
at time 5. 
The journal borrowed at time 6 is returned to the library and 
the loan is closed. 
The librarian verifies that the loan was actually closed. 

The only diflFerence with respect to the scenario described in Section 1.4 
is the operation occurring at time 7, when a document not available for loan 
is reserved by an authorized user (only internal users can borrow journals). 

In the static object diagram (Fig. 8.4, left), accounting for all possible inter-
object relationships that may occur in any program execution, three new nodes 
are present, representing instances of class Reservat ion: Reservat ion! , 
Reservat ion2 and Reservat ions . The object Rese rva t ion ! is created by 
the method reserveDocument, in class Library, each time a user makes a 
reservation on a document not available for loan. The object L ib ra ry ! holds 
the list of such objects (link from L ib ra ry ! to Reserva t ion! ) . Moreover, the 
involved user and document also possess a reference to it (links from Book!, 
Journa l ! , Technica lRepor t ! and from User!, In t e rna lUse r ! ) . 

The object Reservat ion2 is created inside method c lea rRese rva t ion in 
class Library. It is a temporary object referencing user and document (links 
toward User!, I n t e r n a l U s e r ! and Book!, Journa l ! , TechnicalReport!) in­
volved in the reservation to be canceled, but not referenced by them (no 
backward fink, as shown in Fig. 8.4, left). This object is passed to method 
removeReservation from class Library, where the library operation remove 
on the Co l l ec t i on r e s e r v a t i o n s is invoked with this object as a parame­
ter. Implicitly, the method equals of class Reservat ion is called to check if 
Reservat ion2 is present inside r e s e r v a t i o n s , and in case of positive answer, 
it is removed. 

The object Reserva t ions is another temporary object, created inside 
method i sReserving in class Library. It is passed to the library operation 
con ta ins , called on the Co l l ec t i on r e s e r v a t i o n s to check if Reservat ions 
is present inside it. Method equals of class Reservat ion is once again invoked 
implicitly. 

The dynamic object diagram shown on the right in Fig. 8.4 gives a partial 
view of the inter-object relationships, holding when the scenario described 
above is executed. Specifically, since the reservation requested at time 7 can 
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be completed successfully, in that the related document is not available for 
loan, it is not already reserved by another user, and the given user is autho­
rized to borrow it, an object representing the reservation (Reservat ion!) is 
created. It is accessible from L ib ra ry l through the Unk r e s e r v a t i o n s , and 
it has a bidirectional association with the two specific objects involved in the 
reservation: Journa l 1 and In te rna lUser2 . 

It should be noted that, differently from the static object diagram, in the 
dynamic view objects participating in a relationship are uniquely identified, 
thus making the diagram easier to interpret. On the other hand, the main 
disadvantage of the dynamic view is that it holds only for the specific scenario 
for which it was built. 

4.3: addReservatio] 

Libraryl: Library 
4: addReservation 

4.1:getUseK 
4.2: getDocuih^t 1: is Available 

2: isReserved 
ReservatiQn1:ReseryariQn | \ \ 3. authorizedLoan 

4.4: addReservation 

InternalUserl: InternalUser 
User1: User jQurnaH: Journal 

BQQKI : BQQK 

TechnicalReportI: TechnicalReport 

3.1: authorizedUser 

F i g . 8 . 5 . C o l l a b o r a t i o n d i a g r a m focused on m e t h o d r e s e r v e D o c u m e n t of c lass 

L i b r a r y . 

Fig. 8.5 shows the collaboration diagram for the method reserveDocument 
of class Library. This is a completely new method, introduced in class 
L ibra ry to support the reservation mechanism. 

The first three calls ( i sAva i l ab l e , i sReserved, authorizedLoan) check 
whether the reservation can take place or not. A document can be reserved 
only if it is not available and not already reserved (calls number 1 and 2). 
Moreover, the reservation proceeds only if the given use r (first method's 
parameter) has the permission to reserve the given document doc (second 
method's parameter). This is checked by the call number 3 (authorizedLoan), 
which requires a nested call to author izedUser (numbered 3.1) when the 
document being reserved is a Journal , since only internal users can borrow 
journals. 

If all checks above are positive, a reservation is created by means of the call 
number 4 (addReservation). Target of this call is L ib ra ry l , i.e., the same 
object on which method reserveDocument was originally invoked. 

The parameter passed to addReservation is a newly created object of 
class Reservat ion, indicated as Rese rva t ion ! in Fig. 8.5. Such an object is 
the target of the invocations numbered 4.1 and 4.2, aimed at obtaining User 
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and Document involved in the reservation. Then, method addReservation 
inserts the object Rese rva t ion ! into the Co l l ec t ion r e s e r v a t i o n s of the 
library (i.e., of object Library 1) and calls the method addReservation on 
the user and document participating in the reservation, in order to create 
backward links directed toward Reservat ion! . Possible sources of these hnks 
are I n t e r n a l U s e r ! , User! and Book!, J o u r n a l ! , TechnicalRepor t ! (the 
latter is an inaccuracy introduced by the static analysis method employed). 

The collaboration diagram described above is extremely useful to under­
stand the logics behind the reservation mechanism and its interactions with 
the loan authorization policy. The contribution to the reservation functional­
ity of code fragments belonging to different classes is presented in a summary, 
compact form in Fig. 8.5. Recovering the same knowledge by code reading 
would require jumping from class to class, with the risk of missing relevant 
message exchanges. 

The behavior of the method borrowDocument is substantially changed by 
the implementation of the reservation mechanism, while this is not the case for 
method returnDocument. A comparison of the interaction diagram in Fig. 8.6 
with that in Fig. 1.3 reveals the differences. 

In the message exchanges that precede the call to addLoan, we can notice 
a few differences. In addition to the checks performed by calling methods 
number Of Loans, i sAva i l ab le and authorizedLoan (calls number 3, 4, 5 in 
Fig. 8.6), the method borrowDocument verifies that, if the document is already 
reserved (call number 1 to isReserved), the user who made the reservation 
is the same who is now requesting the loan (call number 2 to getReserver) . 
If this is not the case, the method borrowDocument is aborted and returns 
false. 

If all checks performed by calls 1 through 5 give a positive answer, borrow­
ing can proceed and a new loan can be inserted into the library. The object 
representing such a new loan is indicated as Loan! in Fig. 8.6. It is passed as 
a parameter to the next invoked method, addLoan (call number 6, issued on 
object L i b r a r y ! itself). 

The first four operations carried out inside the new version of method 
addLoan in class Library are the same as in the original method (compare 
calls 6.1, 6.2, 6.3, 6.4 in Fig. 8.6 with calls 4.1, 4.2, 4.3, 4.4 in Fig. 1.3). 
The next operations have been added to ensure a correct management of the 
reservations possibly made on the document being borrowed. 

If the document being borrowed was previously reserved (call 6.5 to 
isReserved), the user who made the reservation is accessed (call 6.6 to 
getReserver) to verify that it is coincident with the one activating the loan. 
This is a safety, redundant check with respect to that performed through calls 
1 and 2 in Fig. 8.6. It is made under the hypothesis that addLccoi could be 
called also by methods other than borrowDocument. 

Once such a check gives a positive answer, the reservation is canceled, 
by invoking method removeReservation of class Library (call number 6.7). 
The called method deletes its parameter. Reservat ion! , from the Col lec t ion 
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Fig. 8.6. Sequence diagram focused on method borrowDocument of class Library. 

r e s e r v a t i o n s of L ib ra ry l . In order to also delete the backward links from 
User and Document involved in the reservation, the two associated objects are 
retrieved by respectively caUing getUser and getDocument on Rese rva t ion ! 
(calls number 6.7.1, 6.7.2). Then, invocation of removeReservation on the 
two retrieved objects (calls 6.7.3, 6.7.4) completes the execution of remove-
Reservat ion inside class Library. In turn, the method removeReservation 
inside the class Document assigns a null value to the attribute r e s e r v a t i o n , 
while removeReservation inside class User deletes Rese rva t ion ! from the 
attribute r e s e r v a t i o n s , of type Col lec t ion . 

The sequence diagram in Fig. 8.6 provides a centralized, compact view 
of the code changes introduced to handle document loans in the presence of 
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reservations. The additional operations are easily identified by comparing this 
diagram with that given in Section 1.5. The objects collaborating to implement 
the new functionality are all depicted at the top of Fig. 8.6, their role being 
evident from the message exchanges shown on the vertical time lines. 

so {reservations=empty} 

addReservation 

SO {reservation=nul 

addReservation 

W] j 

removcReservation 

S1 {reservations=one} 

removeReservation addReservation 

addReservation 

S1 {reservation=RGservation1} a 
removeReservation 

removeReservation 

S2 {reservalions=many) D 
Fig. 8.7. State diagram for class Document (left) and User (right). 

Let us now consider the state diagrams for the new version of the eLib 
program. The classes Document and User have a new attribute (respectively, 
r e s e r v a t i o n and r e s e r v a t i o n s ) accounting for the new reservation mecha­
nism. Correspondingly, the possible states of the objects instantiating these 
classes can be characterized in terms of the (abstract) values assumed by the 
new attributes. If these attributes are considered in isolation, the state dia­
grams in Fig. 8.7 are obtained by executing an abstract interpretation of the 
methods in these two classes. The abstract values used for r e s e r v a t i o n and 
r e s e r v a t i o n s parallel those used for loan (in class Document) and loans (in 
class User) in Section 1.6 (see Fig. 1.5). Specifically, the two abstract values 
null and Reservation! are used for Document . r e s e r v a t i o n , while empty, one 
and many are used for User . r e s e r v a t i o n s . 

As apparent from Fig. 8.7, the dynamics of the state changes associ­
ated with the two new attributes are similar to those already described for 
Document.loan and User . loans . This is a confirmation of the analog roles 
played by loans and reservations. The two related classes, Loan and Reserva­
t i on , descend from a common super-class, UserDocumentAssociation, and 
inherit from it the associations with User and Document. Correspondingly, the 
state changes induced inside these latter classes are similar when attributes 
l o a n s / r e s e r v a t i o n s or l o a n / r e s e r v a t i o n are respectively considered. 
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Specifically, as regards the class User (see Fig. 8.7, right), in the initial 
state 5o, the only invocation that can occur is the invocation of method 
addReservation. This leads to state Si, where a call to addReservation 
results in 52 as the new state, while a call to removeReservation brings the 
class state back to SQ. In state ^2 addReservation leaves the current state 
unchanged, while removeReservation may leave it unchanged or lead to ^ i , 
when one reservation remains in the Co l l ec t ion r e s e r v a t i o n s . 

The state diagram for class Document (see Fig. 8.7, left) indicates that 
addReservation is called only when the document is not currently reserved 
{reservation=null), while removeReservation is called only when the docu­
ment is reserved {reservation=Reservationl). 

SI {<s, e>} 

removeReservation addReservation 

S3 {<e,s>} ]==C 

addLoan 
removeLoan 

removeReservation 

removeLoan 

addReservation 
removeReservation 

addLoan 
removeLoan 

addReservation 
removeReservation 

Fig. 8.8. State diagram for class Library. 

Introduction of the reservation mechanism requires that a new attribute, 
r e s e r v a t i o n s , of type Col lec t ion , be added inside the class Library. Since 
the values of this attribute interact with the values of attribute loans , because 
the logics behind reserving and borrowing a document are interleaved, it makes 
sense to describe the values of these two attributes jointly. The procedure is 
similar to that followed to produce the joint description given in Section 1.6, 
Fig. 1.6. 

Let us indicate the joint values of loans and r e s e r v a t i o n s (both of type 
Col lec t ion) as a pair, using the abstract value e for an empty Co l l ec t i on 
and s when some (i.e., at least one) elements are inside the given Col lec t ion . 
Thus, a pair < s, e > indicates that the attribute loans hold some (more than 
zero) elements, while r e s e r v a t i o n s is empty. In other words, there are active 
loans in the library, but there is no active reservation. 

Fig. 8.8 shows the state diagram that results from the abstract inter­
pretation of the methods of class Library with the abstract values described 
above. The initial state produced by the constructor of class L ibra ry (SQ) has 
both containers ( loans and r e s e r v a t i o n s ) empty. An invocation of addLoan 
leads the library to state Si (non empty loans, empty r e s e r v a t i o n s ) , while 



170 8 Conclusions 

no invocation of addReservation (neither of the removal methods) can ever 
occur in 5o, due to the checks performed in the code issuing such invoca­
tions. Specifically, the only invocation to addReservation is inside method 
reserveDocument of class Library, where the call is issued only if the docu­
ment being reserved is not available. This implies that at least one loan must 
exist {loans=s). 

In state ^ i , loans can be added and removed. In the latter case, the new 
state is So when no loan remains inside the Co l l ec t i on loans. Moreover, in 
state ^i reservations can be made, since not all documents are available. This 
leads to state S2, < s,s >. 

In state 52, loans and reservations can be added and removed. If eventually 
no reservation remains, the new state is 5 i , a state already described above. 
If method removeLoan is called when exactly one loan is active in the library, 
the new state is a fourth one (53), never encountered before, characterized by 
an empty set of loans and some reservations pending. It should be noted that 
this state is not reachable directly from the initial state SQ, since reservations 
cannot be added when no loans are present. Thus, the only way to reach it is 
to go through all the other states, 5o, 5 i , 52. 

If all reservations are cleared in state 53, the final state that is reached is 
SQ. On the other side, if loans are added, the state of the Ubrary goes back to 
52. 

State diagrams are useful in understanding how the introduction of the 
reservation mechanism affects the internal states of the classes. The new at­
tributes r e s e r v a t i o n s and r e s e r v a t i o n inside the classes User and Document 
are not influenced by the other class attributes, similarly to the original at­
tributes loans and loan in the same classes. On the contrary, in the class 
Library, loans and r e s e r v a t i o n s are mutually related. Their joint descrip­
tion given in the state diagram of Fig. 8.8 highlights the permitted transitions 
in each state and the possible paths from one state to another one. This is 
potentially useful to support comprehension of the changed system and of the 
differences with respect to the original one. It will also help in the definition 
of test cases for the changed classes, particularly when the state-based testing 
approach is being used [6, 92]. In fact, this may turn out to be its primary 

8.3 Perspectives 

The authors' position is that all the information about a program should be 
in the source code. From a purely observational point of view, the well-known 
effects of software evolution, consisting of a progressive misalignment of source 
code and other sources of information about a program, entail that only the 
source code is reliable. So, de-facto, most information about a program is 
in the source code. On the prescriptive side, one could take as the extreme 
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consequence the fact that everything should be part of the code (including 
design, documentation, etc.). 

The first view gives a central role to reverse engineering in the future of 
software development. Although this discipline was born with the problems of 
legacy systems in mind, new software systems, developed according to modern 
programming paradigms such as the Object Oriented one, are not free from 
the problems related to program comprehension and modification. As de­
scribed in this book, the comprehension problems involved in understanding 
Object Oriented systems are different from those arising with more traditional 
software, but remain the main concerns during the evolution phase. Reverse 
engineering has the potential to address them. 

The view in which all relevant information about a program is central­
ized in a single source, the code, comes from the Extreme Programming (XP) 
development process [36]. In this methodology, limited effort is devoted to 
design and design documents are not maintained over time. They are con­
sidered a temporary support to communication and understanding, that is 
abandoned when software engineers move to the implementation. The ab­
sence of design information is mitigated by pair programming, by continuous 
execution of refactoring, and by the description of functionalities in terms of 
test cases. Reverse engineering can make an important contribution here [93]. 
In fact, understanding the organization of an application and of the interac­
tions among its objects is a quite difficult task in the XP setting. As discussed 
in this book, there are several diagrams that can be extracted automatically 
from the source code and approximate quite well this kind of information. 

Looking at the emerging programming languages and paradigms, we can 
hypothesize an increasing role of reverse engineering. Programming languages 
tend to evolve so as to maintain very precise information about the program's 
behavior in the source code. Modern compilers rely on this information to 
perform several checks, optimizations and transformations. Examples of this 
kind of information are type parameters (genericity) and metadata (e.g., an­
notations), that will be included in the next version (1.5) of the Java language. 
Aspect Oriented Programming [40] and introspection capabilities (e.g., Java 
reflection, OpenJava) are going in the same direction, in that they support a 
programmable interface to the internal units of a program. 

All this has a twofold effect. On one hand, it simplifies reverse engineering, 
in that the source code becomes a richer information repository, that can 
be queried automatically by tools. On the other hand, it makes the design 
diagrams reverse engineered from the source code much more meaningful and 
useful, in that they are based on information directly encoded in the program 
(and checked by the compiler), instead of using information inferred by means 
of approximate static or dynamic analysis methods. Availability of accurate 
diagrams easily extracted from the code will make the reverse engineering 
option even more appealing, getting closer to the XP vision that everything is 
in the source code. In fact, maintaining and evolving multiple descriptions of 
a software system is much too expensive and error prone. Only by focusing on 
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the source code as the single source of information, is it possible to keep costs 
low and to avoid communication errors resulting from inconsistent views. 

8.4 Related Work 

Reverse engineering tools have been mainly developed to support the analysis 
of existing procedural software, written in widely used programming languages 
such as C and Cobol [5, 12, 13, 14, 23, 26, 33, 34, 37, 43, 39, 59, 64, 66]. It is 
only in the last 10 years that the problem of reverse engineering design views 
from Object Oriented code has been considered [9, 20, 28, 29, 44, 42, 62, 67, 
72, 74, 83, 85, 97, 101]. 

Some works [9, 44, 72, 74, 85, 101] are focused on the problem of identifying 
well-known, recurring architectural solutions, called design patterns, which 
are widely employed in the design of Object Oriented systems. Important 
information about the design rationale is recovered when such patterns are 
matched in the code. 

In [29, 42, 62, 67, 97], the creation of objects and inter-object message 
exchange are captured by tracing the execution of a program on a given set 
of scenarios. This allows for a dynamic recovery of the interaction diagrams 
from a complete Object Oriented application. 

Static analysis is employed in [20] to reverse engineer so-called Object 
Process Graphs, giving a finite description of all possible operation sequences, 
extracted for individual stack and heap-allocated objects. 

The construction of call graphs for Object Oriented programs and their 
accuracy are considered in [28, 83]. 

8.4.1 Code Analysis at C E R N 

The material presented in this book is based on previous work conducted in the 
context of a collaboration with CERN, (Conseil Europeen pour la Recherche 
Nucleaire), the research center performing high energy physics experiments in 
Geneva. The new experiments (currently under preparation at CERN) rep­
resent a major challenge in terms of the resources involved, including many 
software resources. Historic libraries developed in Fortran at CERN to support 
the execution of high energy physics experiments have since been ported to 
C + + . Such a tremendous effort was conducted in a very heterogeneous and 
loosely controlled development environment, which involves lots of institu­
tions distributed world-wide and many persons with a wide range of software 
engineering skills. 

The collaboration of the authors with CERN aimed at studying method­
ologies and tools to control and improve the quality of the code developed 
at CERN. One of the planned deliverables in such a streamline was the re­
verse engineering tool RevEng, for extracting UML diagrams from C + + code. 
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The architecture of RevEng and its language model, described in more detail 
in [63], are similar to those given above for the Java language. 

Among the diagrams that RevEng extracts from a program, are the class, 
object and interaction diagrams which have been described here. Their utility 
has been empirically assessed in [87, 89, 90]. 

The ROOT C-h+ library [10], which is widely employed in High Energy 
Physics computing, offers several containers and container operations for in­
stances of subclasses of the top level class TObject. Such containers are de­
clared without indicating the contained objects' type. Thus, they are prone 
to the problems discussed in Chapter 3, occurring when the class diagram 
is reverse engineered in presence of weakly typed containers. Experimental 
results obtained on CERN code indicate that there is a substantial difference 
between class diagrams produced with or without running the container anal­
ysis algorithm described in Chapter 3. A large fraction of inter-class relations 
is missed if container types are not determined. Moreover, the diagrams of 
improved quality are expected to be much closer to the mental model of the 
application under analysis. They can therefore be used more effectively for 
the high-level comprehension of the system and for its evolution. 

The complementary roles of static and dynamic analysis of the source code 
in the extraction of the object diagram, discussed in Chapter 4, is investigated 
in [89], with reference to a case study in the C-\—\- language. In [90], 27 C + + 
systems developed at CERN have been analyzed, with the purpose of extract­
ing the related interaction diagrams. Empirical data indicate that diagrams 
of manageable size can be generated thanks to the possibility of performing 
a partial analysis and of focusing the view on each computation of interest 
(see Chapter 5 for a description of these two techniques). The resulting views 
have been evaluated by the authors of the related code, who judged them 
extremely informative. They were able to summarize information otherwise 
spread throughout the code. 
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1 import java.util.*; 
2 import java.io.*; 

Jile Library. j ava . 

3 class Library { 
4 Map documents = new HashMapO; 
5 Map users = new HashMapO ; 
6 Collection loans = new LinkedListO ; 
7 final int MAX_NUMBER_OF_LOANS = 20; 

8 public boolean addUser(User user) { 
9 if (!users.containsValue(user)) { 
10 users, put (new Integer (user .getCodeO) , user); 
11 return true; 
12 } 
13 return false; 
14 } 

15 public boolean removeUser(int userCode) { 
16 User user = (User)users.get(new Integer(userCode)); 
17 if (user == null I I user.numberOfLoans() > 0) return false; 
18 users.remove(new Integer(userCode)); 
19 return true; 
20 } 

21 public User getUser(int userCode) { 
22 return (User)users.get(new Integer(userCode)); 
23 } 
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24 public boolean addDocument(Document doc) { 
25 i f (!documents.containsValue(doc)) { 
26 documents.put(new Integer(doc.getCode()) , doc); 
27 return true; 
28 } 
29 return false; 
30 } 

31 public boolean removeDocument(int docCode) { 
32 Document doc = (Document)documents.get(new Integer(docCode)); 
33 if (doc == null II doc.isOutO) return false; 
34 documents.remove(new Integer(docCode)); 
35 return true; 
36 } 

37 public Dociiment getDocument(int docCode) { 
38 return (Document)documents.get(new Integer(docCode)); 
39 } 

40 private void addLoan(Loan loan) { 
41 if (loan == null) return; 
42 User user = loan.getUserO; 
43 Document doc = loan.getDociimentO ; 
44 loans.add(loan); 
45 user.addLoan(loan); 
46 doc.addLoan(loan); 
47 } 

48 private void removeLoan(Loan loan) { 
49 if (loan == null) return; 
50 User user = loan.getUserO; 
51 Document doc = loan.getDocumentO ; 
52 loans.remove(loan); 
53 user.removeLoan(loan); 
54 doc.removeLoanO; 
55 } 

56 public boolean borrowDocument(User user, Document doc) { 
57 if (user == null I I doc == null) return false; 
58 if (user.numberOfLoans0 < MAX_NUMBER_OF_LOANS && 
59 doc.isAvailableO && doc.authorizedLoan(user)) { 
60 Loan loeoi = new Loan(user, doc); 
61 addLoan(loan); 
62 return true; 
63 } 
64 return false; 
65 } 
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66 public boolean returnDocument(Document doc) { 
67 if (doc == null) return false; 
68 if (doc.isOutO) { 
69 User user = doc.getBorrowerO; 
70 Loan loan = new Loan(user, doc); 
71 removeLoan(loan); 
72 return true; 
73 } 
74 return false; 
75 } 

76 public boolean isHolding(User user, Document doc) { 
77 if (user == null I I doc == null) return false; 
78 return loans.contains(new Loan(user, doc)); 
79 } 

80 public List searchUser(String name) { 
81 List usersFound = new LinkedListO; 
82 Iterator i = users.values().iterator(); 
83 while (i.hasNextO) { 
84 User user = (User)i.next(); 
85 if (user.getName0.indexOf(name) != -1) 
86 usersFound.add(user); 
87 } 
88 return usersFound; 
89 } 

90 public List searchDocumentByTitle(String title) { 
91 List docsFound = new LinkedListO; 
92 Iterator i = documents.values().iterator0; 
93 while (i.hasNextO) { 
94 Document doc = (Document)i.next(); 
95 if (doc.getTitle0.indexOf(title) != -1) 
96 docsFound.add(doc); 
97 } 
98 return docsFound; 
99 > 

100 public List searchDocumentByAuthors(String authors) { 
101 List docsFound = new LinkedListO; 
102 Iterator i = documents.values0.iterator(); 
103 while (i.hasNextO) { 
104 Document doc = (Document)i.next(); 
105 if (doc.getAuthorsO.indexOf(authors) != -1) 
106 docsFound.add(doc); 
107 } 
108 return docsFound; 
109 } 
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110 public int searchDocumentBylSBN(String isbn) { 
111 Iterator i = documents.values().iterator(); 
112 while (i.hasNextO) { 
113 Document doc = (Document)i.next(); 
114 if (isbn. equals (doc. getlSBNO)) 
115 return doc.getCode(); 
116 } 
117 return -1; 
118 } 

119 public void printAllLoansO { 
120 Iterator i = loans.iterator(); 
121 while (i.hasNextO) { 
122 Loan loan = (Loan)i.next(); 
123 loan.printO; 
124 } 
125 } 

126 public void printUserInfo(User user) { 
127 user.printlnfoO; 
128 } 

129 public void printDocumentlnfo(Document doc) { 
130 doc.printlnfoO; 
131 } 

132 

133 class Loan { 
134 User user; 
135 Document document; 

_file Loan. Java . 

136 pub l i c Loan(User u s r , Document doc) { 
137 use r = u s r ; 
138 document = doc; 
139 } 

140 public User getUserO { 
141 return user; 
142 } 
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143 p u b l i c Document getDocumentO { 
144 r e t u r n document; 
145 } 

146 public boolean equals(Object obj) { 
147 Loan loan = (Loan)obj; 
148 return user.equals(locin.user) && 
149 document.equals(loan.document); 
150 } 

151 public void print() { 
152 System.out.printIn("User: " + user.getCodeO + 
153 " - It + user.getNameO + 
154 " holds doc: " + document.getCodeO + 
155 ••_..+ document. getTitleO); 
156 } 
157 } 

-file Document. iava . 

158 import java.util.*; 

159 class Document { 
160 int documentCode; 
161 String title; 
162 String authors; 
163 String ISBNCode; 
164 Loan loan = null; 
165 static int nextDocumentCodeAvailable = 0; 

166 public Docioment(String tit) { 
167 title = tit; 
168 ISBNCode = ""; 
169 authors = ""; 
170 documentCode = Document.nextDocumentCodeAvailable++; 
171 } 

172 public boolean equals(Object obj) { 
173 Document doc = (Document)obj; 
174 return documentCode == doc.documentCode; 
175 } 

176 public boolean isAvailableO { 
177 return loan == null; 
178 } 

179 public boolean isOutO { 
180 return !isAvailableO ; 
181 } 
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182 public boolean authorizedLoan(User user) { 
183 return t rue; 
184 } 

185 public User getBorrowerO { 
186 if (loan != null) 
187 return loan.getUserO ; 
188 return null; 
189 } 

190 public int getCodeO { 
191 return documentCode; 
192 } 

193 public String getTitleO { 
194 return title; 
195 } 

196 public String getAuthorsO { 
197 return authors; 
198 } 

199 public String getlSBNO { 
200 return ISBNCode; 
201 } 

202 public void addLoan(Loan In) { 
203 loan = In; 
204 } 

205 public void removeLoanO { 
206 loan = null; 
207 } 

208 protected void printAuthorsO { 
209 System.out.printlnCAuthor(s) : " + getAuthorsO); 
210 } 

211 protected void printHeaderO { 
212 System.out.printlnC"Document: " + getCodeO + 
213 ..-..+ getTitleO); 
214 } 
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215 
216 
217 
218 
219 
220 
221 
222 
223 

224 
225 
226 
227 
228 

229 
230 
231 
232 
233 
234 

235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 

protected void printAvailabilityO { 
if (loan == null) { 
System.out.printIn("Available."); 

} else { 
User user = loan.getUserO ; 
System.out.println("Hold by " + user.getCodeO + 

" - " + user .getNameO) ; 
} 

} 

protected void printGeneralInfo() { 
System.out.println("Title: " + getTitleO); 
if (!getISBN().equals("")) 
System.out.printIn("ISBN: " + getISBN()); 

} 

public void printlnfoO { 
printHeaderO ; 
printGeneralInfo(); 
printAvailabilityO ; 

> 
} 

file Book. j ava 

class Book extends Document { 
public Book(String tit. String auth, String isbn) { 

super(tit); 
ISBNCode = isbn; 
authors = auth; 

} 

public void printlnfoO { 
printHeaderO; 
printAuthorsO ; 
printGeneralInfo(); 
printAvailabilityO; 

> 
} 

-file Journal. j ava . 

249 c l a s s Journal extends Document { 
250 public Journal(String t i t ) { 
251 s u p e r ( t i t ) ; 
252 } 
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253 public boolean authorizedLoan(User user) { 
254 return user.authorizedUser(); 
255 } 

256 

Jile TechnicalReport .Java. 

257 class TechnicalReport extends Document { 
258 String refNo; 

259 public TechnicalReport(String tit, String ref, String auth) { 
260 super(tit); 
261 refNo = ref; 
262 authors = auth; 
263 } 

264 public boolean authorizedLoan(User user) { 
265 return false; 
266 } 

267 public String getRefNoO { 
268 return refNo; 
269 } 

270 protected void printRefNoO { 
271 System, out. println( "Ref . No.: " + getRefNoO); 
272 } 

273 public void printlnfoO { 
274 printHeaderO; 
275 printAuthorsO; 
276 printGenerallnfoO; 
277 printRefNoO; 
278 } 
279 > 

Jile User. J ava . 

280 import java.util.*; 

281 class User { 
282 int userCode; 
283 String fullName; 
284 String address; 
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285 String phoneNumber; 
286 Collection loans = new LinkedListO; 
287 static int nextUserCodeAvailable = 0; 

288 public User(String name, String addr, String phone) { 
289 fullName = name; 
290 address = addr; 
291 phoneNumber = phone; 
292 userCode = User.nextUserCodeAvailable++; 
293 } 
294 
295 public boolean equals(Object obj) { 
296 User user = (User)obj; 
297 return userCode == user.userCode; 
298 } 

299 public boolean authorizedUser() { 
300 return false; 
301 } 

302 public int getCodeO { 
303 return userCode; 
304 } 

305 public String getNameO { 
306 return fullName; 
307 } 

308 public String getAddressO { 
309 return address; 
310 } 

311 public String getPhoneO { 
312 return phoneNumber; 
313 } 

314 public void addLoan(Loan loan) { 
315 loans.add(loan); 
316 } 

317 public int numberOfLoans 0 { 
318 return loans.size(); 
319 } 

320 public void removeLoan(Loan loan) { 
321 loans.remove(loan); 
322 } 
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323 public void printlnfoO { 
324 System, out. print In ("User: " + getCodeO + " - " + getNameO); 
325 System.out.printIn("Address: " + getAddressO); 
326 System, out. print In ("Phone: " + getPhoneO); 
327 System.out.println("Borrowed documents:"); 
328 Iterator i = loans.iterator(); 
329 while (i.hasNextO) { 
330 Loan loan = (Loan)i.next(); 
331 Document doc = loan.getDocumentO; 
332 System, out. print In (doc. getCodeO + " - " + doc.getTitleO); 
333 } 
334 } 
335 } 

Jile InternalUser. Java . 

336 class InternalUser extends User { 
337 String internalld; 

338 public InternalUser(String name, String addr, 
339 String phone, String id) { 
340 super(name, addr, phone); 
341 internalld = id; 
342 } 

343 public boolean authorizedUserO { 
344 return true; 
345 } 

346 



B 

Driver class for the eLib program 

Jile Main. j ava . 

347 class Main { 
348 static Library lib = new LibraryO; 

349 public static void printHeaderO { 
350 System.out.printIn("COMMANDS:"); 
351 System.out.printIn("addUser name, address, phone"); 
352 System.out.printlnC'addlntUser name, address, phone, id"); 
353 System.out.printIn("rmUser userld"); 
354 SyStem.out.printIn("addBook title, authors, ISBN"); 
355 System.out.println("addReport title, ref, authors"); 
356 System.out.println("addJournal title"); 
357 System.out.printIn("rmDoc docid"); 
358 System.out.println("borrowDoc userld, docId"); 
359 System.out.printIn("returnDoc docId"); 
360 System.out.printIn("searchUser name"); 
361 System.out.printIn("searchDoc title"); 
362 System.out.println("isHolding userld, docId"); 
363 System.out.println("printLoans"); 
364 System.out.println("printUser userld"); 
365 System.out.println("printDoc docId"); 
366 System.out.printIn("exit"); 
367 } 
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368 public s t a t i c String [] getArgs(String cmd) { 
369 String args[] = new String [0] ; 
370 String s = cmd.trim(); 
371 if (s.indexOfC ") != -1) { 
372 s = s.substringCs.indexOf(" " ) ) ; 
373 args = s.trimO . s p l i t C ' , " ) ; 
374 for (int i = 0 ; i < args.length ; i++) 
375 args[i] = args [i] .trimO ; 
376 } 
377 return args; 
378 } 

379 public static void addUser(String cmd) { 
380 String args [] = getArgs (cmd); 
381 if (args.length < 3) return; 
382 User user = new User (args [0] , args[l], args [2]); 
383 lib.addUser(user); 
384 System.out.println("Added user: " + user.getCodeO + 
385 M « n + user.getNameO); 
386 } 

387 public static void addlntUser(String cmd) { 
388 String args[] = getArgs(cmd); 
389 if (args.length < 4) return; 
390 User user = new InternalUser(args [0] , args[l], args [2], args [3]); 
391 lib.addUser(user); 
392 System.out.printIn("Added user: " + user.getCodeO + 
393 " - " + user.getNameO); 
394 } 

395 public static void rmUser(String cmd) { 
396 String args[] = getArgs(cmd); 
397 if (args.length < 1) return; 
398 User user = lib.getUser(Integer.parseint(args[0])); 
399 if (lib.removeUser(Integer.parseInt(args[0]))) 
400 System.out.println("Removed user: " + user.getCodeO + 
401 " • _ , , + user.getNameO); 
402 } 

403 public static void addBook(String cmd) { 
404 String args [] = getArgs (cmd); 
405 if (args.length < 3) return; 
406 Document doc = new Book(args[0], args[l], args[2]); 
407 lib.addDocument(doc); 
408 System.out.println("Added doc: " + doc.getCodeO + 
409 n - M + doc.getTitleO); 
410 } 



B Driver class for the eLib program 187 

411 public static void addReport(String cmd) { 
412 String args [] = getArgs(cmd); 
413 if (args.length < 3) return; 
414 Document doc = new TechnicalReport(args[0], args[l], args[2]); 
415 lib.addDocument(doc); 
416 System.out.printIn("Added doc: " + doc.getCodeO + 
417 .. _ " + doc.getTitleO); 
418 } 

419 public static void addJournaKString cmd) { 
420 String args[] = getArgs(cmd); 
421 if (args.length < 1) return; 
422 Document doc = new JournaKargs [0]); 
423 lib.addDocument(doc); 
424 System.out.printIn("Added doc: " + doc.getCodeO + 
425 n - " + docgetTitleO); 
426 } 

427 public static void rmDoc(String cmd) { 
428 String args[] = getArgs(cmd); 
429 if (args.length < 1) return; 
430 Document doc = lib.getDocumentdnteger.parseInt (args [0])); 
431 if (lib.removeDocument(Integer.parseInt(args[0]))) 
432 System.out.printIn("Removed doc: " + doc.getCodeO + 
433 " - " + doc.getTitleO); 
434 } 

435 public static void borrowDoc(String cmd) { 
436 String args[] = getArgs(cmd); 
437 if (args.length < 2) return; 
438 User user = lib.getUser(Integer.parseInt(args[0])); 
439 Document doc = lib.getDocument(Integer.parseInt(args[l])); 
440 if (user == null I I doc == null) return; 
441 if (lib.borrowDocument(user, doc)) 
442 System.out.println("New loan: " + user.getNameO + 
443 .._,.+ doc.getTitleO); 
444 } 

445 public static void returnDoc(String cmd) { 
446 String args[] = getArgs(cmd); 
447 if (args.length < 1) return; 
448 Document doc = lib.getDocumentdnteger .parselnt(args[0])); 
449 if (doc == null) return; 
450 User user = doc.getBorrowerO; 
451 if (user == null) return; 
452 if (lib.returnDocument(doc)) 
453 System.out.printIn("Loan closed: " + user.getName0 + 
454 ••-..+ doc.getTitleO); 
455 } 
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456 public static void searchUser(String cmd) { 
457 String args[] = getArgs(cmd); 
458 if (args.length < 1) return; 
459 List users = lib.searchUser(args[0]); 
460 Iterator i = users.iterator(); 
461 while (i.hasNextO) { 
462 User user = (User)i.next(); 
463 System.out.println("User found: " + user.getCodeO + 
464 M _ II + user.getNameO); 
465 } 
466 } 

467 public static void searchDoc(String cmd) { 
468 String args[] = getArgs(cmd); 
469 if (args.length < 1) return; 
470 List docs = lib.searchDocumentByTitle(args[0]); 
471 Iterator i = docs.iterator0; 
472 while (i .hasNextO) { 
473 Document doc = (Document)i.next(); 
474 System.out.printIn("Doc found: " + doc.getCodeO + 
475 M _ II + doc.getTitleO); 
476 } 
477 } 

478 public static void isHolding(String cmd) { 
479 String args[] = getArgs(cmd); 
480 if (args.length < 2) return; 
481 User user = lib.getUser(Integer.parseInt(args[0])); 
482 Document doc = lib.getDocumentdnteger .parselnt(args[l])); 
483 if (lib.isHolding(user, doc)) 
484 System.out.println(user.getNameO + 
485 " is holding " + doc.getTitleO); 
486 else 
487 System.out.println(user.getNameO + 
488 " is not holding " + doc.getTitleO); 
489 } 

490 public static void printUser(String cmd) { 
491 String args[] = getArgs(cmd); 
492 if (args.length < 1) return; 
493 User user = lib.getUser(Integer.parseint(args[0])); 
494 if (user != null) 
495 user.printlnfoO; 
496 } 

497 public static void printDoc(String cmd) { 
498 String args[] = getArgs(cmd); 
499 if (args.length < 1) return; 
500 Document doc = lib. getDociiment( Integer .parseint (args [0])); 
501 if (doc != null) 
502 doc.printlnfoO; 
503 } 
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504 public static void dispatchCommand(String cmd) { 
505 if (cmd.startsWithC'addUser")) addUser(cmd); 
506 if (cmd.startsWithC'addlntUser")) addliitUser(cmd); 
507 if (cmd.startsWithC'rmUser")) rmUser(cmd); 
508 if (cmd.startsWithC'addBook")) addBook(cmd); 
509 if (cmd.startsWithC'addReport")) addReport(cmd); 
510 if (cmd.StartsWithC"addJournal")) addJournal(cmd); 
511 if (cmd.startsWith("rinDoc")) rinDoc(cmd); 
512 if (cmd.startsWith("borrowDoc")) borrowDoc(cmd); 
513 if (cmd.startsWith("returnDoc")) returnDoc(cmd); 
514 if (cmd.startsWith("searchUser")) searchUser(cmd); 
515 if (cind.startsWith("searchDoc")) searchDoc(cmd) ; 
516 if (cmd.startsWith("isHolding")) isHolding(cmd); 
517 if (cmd.startsWith("printLoans")) lib.printAllLoansO; 
518 if (cmd.startsWith("printUser")) printUser(cmd); 
519 if (cmd.startsWith("printDoc")) printDoc(cmd); 
520 } 

521 public static void main(String arg[]) { 
522 try{ 
523 printHeaderO; 
524 String s = ""; 
525 BufferedReader in = new BufferedReader( 
526 new InputStreamReader(System.in)); 
527 while (!s.equals("exit")) { 
528 s = in.readLineO ; 
529 dispatchCommand(s); 
530 } 
531 } catch (lOException e) { 
532 System.err.println("10 error."); 
533 System.exit(1); 
534 } 
535 } 
536 } 
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Names of main diagrams and graphs appear in small capitals: e.g. CLASS DIAGRAM. 
Page numbers in bold represent an extensive treatment of a notion. Numbers in italics 
refer to the eLib program. A letter after the page number indicates the appendix. 

abstract domain, 118, see also symbolic 
attribute values, equivalence 
classes of at tr ibute values 

coffee machine example, 119 
for documents (Library) , 128 
for loans (Library) , 128 
for loans (User), 126 
for loan (Document), 125 
for u s e r s (Library) , 128 

abstract interpretation, 19, 115, 118 
abstract domain, 118, 119 
abstraction, 118 
accuracy of the solution, 119, 122 
complete semi-lattice, 118 
constraints in, 118 
for addLoan (Document), 126 
for Document (Document), 126 
for i n s e r t Q u a r t e r , 121 
for removeLoan (Document), 126 
paths, 122 

abstract language, 2 1 , see also abstract 
syntax 

name conflicts, 22 
abstract syntax, 23 , see also program 

location 
allocation statement, 24, 25 
assignment statement, 24, 28, 29 

attr ibute declaration, 22, 24 
class attribute, 24 
class name, 24 
constructor declaration, 23, 24 
declaration, 22 
for binary tree example, 50 
for addLoan (Document), 37 
for addLoan (Library) , 37 
for addLocLn (User), 37 
for addUser (Library) , 55 
for borrowDocument (Library) , 36 
for getDocument (Loan), 32 
for getUser (Loan), 32 
for searchDocumentByTitle 

(Library) , 55 
identifier, 23 
local variable, 24 
method declaration, 23, 24 
method invocation, 24, 25 
method parameter, 24 
program location, 24 
statement, 24 

Abstract Syntax Tree (AST), 156 
adaptive maintenance, 2 
addBook (Main), 186(B) 
addDocument (Library), 6, 176(A) 

addlntUser (Main), 186(B) 

addJournal (Main), 187(B) 
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addLeft (BinaryTreeNode), 66 
addLoan (Document), 180(A) 

abstract interpretation of, 126 
abstract syntax, 37 

addLoan (Library) , 176(A) 
abstract syntax, 37 
method call resolution, 93 
OFG associated with, 39 
sequence/collaboration diagrams, 95, 

97 
addLoan (User), 183(A) 

abstract syntax, 37 
addReport (Main), 187(B) 
addReservat ion (Library , Document, 

User), 160 
address (User), 182(A) 
addRight (BinaryTreeNode), 66 
addStudent (UniversityAdmin), 50 
addUser (Library) , 6, 175(A) 

abstract syntax, 55 
addUser (Main), 79, 186(B) 

abstract syntax, 55 
agglomerative clustering, 139, I48 
allocation points, 8, 32, 63, 95 
allocation statement, 8 

OFG edges due to, 38 
ARCH tool, 153 
architecture of eLib program, 5 
Aspect Oriented Programming (AOP) 

for object diagram recovery, 87 
for sequence diagram recovery, 112 

attributes 
abstract description of, 115 
equivalence classes, 115 
joint values of, 14 
symbolic values of, 14, 15, 16, 118 

authorizedLoan (Document), 7, 8, 
180(A) 

authorizedLoan (Journal) , 8, 182(A) 
authorizedLoan (TechnicalReport) , 8, 

182(A) 
author izedUser ( in t e rna lUse r ) , 

184(A) 
author izedUser (User), 7, 8, 183(A) 
au tho r s (Document), 179(A) 

Bandera tool, 131 

behavior recovering, 2, 89, 112, see also 
INTERACTION DIAGRAMS, STATE 

DIAGRAM 

binary tree example, 50, 65, 66, 70, 75 
abstract syntax, 50 
class diagram, 68 
coverage of static object diagram, 77 
dynamic object diagrams, 76 
missing relationships in class diagram, 

51 
object diagram, 68, 73 
OFG, 51, 71, 72 

BinaryTree class, 66, 70 
BinaryTreeNode (BinaryTreeNode), 50, 

70 
BinaryTreeNode class, 50, 66, 70 
Book (Book), 181(A) 
Book class, 181(A) 
borrowDoc (Main), 187(B) 
borrowDocument (Library) , 7, 176(A) 

abstract method declaration, 24 
abstract syntax, 36 
collaboration diagram focused on, 11, 

107 
OFG associated with, 39 
OFG edges, 27 
OFG nodes, 26 
sequence diagram focused on, 167 

b u i l d (BinaryTree), 66 

C-f+ 
reverse engineering tools for, 172 

call graph, 98, 112, 172 
call resolution in interaction diagrams, 

92, 93, 96 
CERN, IX, 172 
change impact analysis, IX, 1, 2, 155, 

162 
change location, 155, 160 
change request, 2, ^, 155, 159 
class behavior, see STATE DIAGRAM 

CLASS DIAGRAM, IX, 5, 44 

accuracy of interclass relationships, 
59 

basic algorithm, 18, 43, 46 
containers, 18, 51 , 55 
for binary tree example, 68 
for eLih program, 5 
for eLih with container analysis, 58 
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for eLib with dependencies, 59 
for eLib without container analysis, 

57 
inaccuracies of the basic algorithm, 

43, 47 
inheritance in, 18, 47 
interfaces in, 18, 48, 50 
missing relationships in binary tree 

example, 51 
with/without container analysis, 60 

Class Hierarchy Analysis (CHA), 59 
class identification, see object identifi­

cation in procedural code 
class instances, 63, 64 
class vs. interaction diagram, 90 
class vs. object diagram, 10, 63, 64, 83 
clearReservation (Library), 160, 163 
clustering, 19, 136 

agglomerative algorithm, 139, I48 
black hole, 140 
combined algorithm, 139 
direct link approach, 136 
distance measure, 137 
distance vs. similarity measure, 137 
divisive algorithm, 139 
feature vector, 136, 149 
gas cloud, 140 
hierarchical algorithms, 138 
hierarchy of packages, 140, 143, 149 
hill-chmbing algorithm, 142 
interconnection strength, 143 
linkage rules, 139 
modularity optimization, 140, I48, 

150, 151 
sibling link approach, 136 
similarity between clusters, 139 
similarity measure, 137 

clustering vs. concept analysis, 154 
coffee machine example, 116 

abstract domains, 119 
abstract interpretation of methods, 

125 
abstract interpretation of operators, 

120 
abstract interpretation of 

insertQuarter, 121 
accuracy of the solution, 119 
state diagram, 117 

collaboration diagram, 18, 89, 90 

focused on borrowDocument, 11, 107 
focused on pr in tAl lLoans , 109 
focused on reserveDocument, 165 
focused on returnDocument 

(Library), 102 
for addLoan (Library) , 95, 97 

complete systems, 3 
concept analysis, 19, 143 

eLib program, 151 
attributes used in code restructuring, 

144 
bottom-up algorithm, 145 
concept, 144, 152 
concept lattice, 144, 147 
concept partition, 147, 152 
concept sub-partitions, 148 
context, 144, 146, 152 
encapsulation, 147 
extent, 144 
Galois connection, 144 
intent, 144 
largest lower bound {infimum), 145 
least upper bound {supremum), 145 
limitation of, 154 
output of, 144 
subconcept, 144 

concept analysis applied to software 
engineering, 143 

class hierarchy reengineering, 61 
class identification, 61 
code restructuring and modulariza­

tion, 143 
extraction of code configurations, 154 
package identification, 19, 143 

containers, 18, 27, 51 
abstract operations on, 28 
flow propagation specialization, 53, 

54 
in ROOT C-\-+ library, 173 
in eLib program, 28, 40, 52, 55, 81 
information associated with in­

sertion/extraction operations, 
52 

insertion/extraction operations, 29 
Java, 27 
OFG construction in presence of, 28 

control flow graph, 41 
convergence of flow propagation 

algorithm, 31 
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corrective maintenance, 2 
coverage testing 

inter-object relationship coverage, 87 
object coverage, 87 

data flows, 21, 26 
decomposition of large software systems, 

see PACKAGE DIAGRAM 

derivation tree, 156 
design decisions, 43, 135, 171 
design diagrams, 2 
design patterns, 172 
design/code consistency, IX 
Dewey numbers, 10, 90, 98 
diagram usability, see usability of 

diagrams 
dispatchCommand (Main), 79, 189(B) 
Document (Document), 179(A) 

abstract interpretation, 126 
Document clgiss, 6, 179(A) 

state diagram, 14, 127, 168 
document (Loan), 6, H I , 178(A) 

OFG edges, 27 
OFG node. 111 

documentCode (Document), 6, 179(A) 
documents (Library) , 6, 175(A) 

abstract domain, 128 
containers, 28, 55 
symbolic values, 16 

dominance analysis, 60, 153 
dynamic analysis, 2, see also dynamic 

interaction diagrams, dynamic 
object diagram 

drawbacks of, 2, 91 
dynamic interaction diagrams, 102, 

see also sequence diagram, 
collaboration diagram 

for returnDocument (Library) , 104 
limitations of, 91, 106 
test case selection criteria, 106 
test cases, 102, 103, 103 

dynamic object diagram, 74 
changed execution scenario, 164 
execution scenario, 9, 84 
for binary tree example, 76 
for eLib program, 8, 86, 163 
limitations of, 64 
test cases, 63, 74 

dynamic vs. static object diagram, 10, 
64, 76, 86 

eLib program, 3 
architecture of, 5 
change location, 155 
change request example, 4, 159 
class diagram, 5 
class diagram after the change, 162 
class diagram with container analysis, 

58 
class diagram with dependencies, 59 
class diagram without container 

analysis, 57 
class partitioning, 148 
clustering hierarchy, 149 
concepts, 152 
containers, 28, 40, 52, 55, 81 
context, 152 
dynamic interaction diagram, 102 
dynamic object diagram, 8, 86, 163, 

164 
execution scenario, 9, 84, 164 
execution traces, 85, 103 
feature vector, 149 
focused interaction diagrams, 107 
functionalities of, 4 
impact analysis, 5 
list of commands, 78 
loan management in, 4 
maintenance, 159 
OFG, 36, 79 
package diagram, 148, 153 
program understanding, 4 
relationships for modularity 

optimization, 150, 151 
reservation mechanism, 159 
ripple effects, 155 
state diagrams, 125 
static interaction diagram, 106 
static object diagram, 8, 82, 163, 164 
test cases, 103 
types of document in, 4, 6 
types of user in, 4, 6 

equals (Document), 179(A) 
equals (Loan), 179(A) 
equals (User), 183(A) 
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equivalence classes of attribute values, 
19, 118, 123, see also abstract 
domain, symbolic attr ibute values 

exchange of messages, see INTERACTION 
DIAGRAMS 

executable systems, 3, 91 
execution trace, 65 

for binary tree example, 75 
for interaction diagram recovery, 102, 

103 
for object diagram recovery, 74, 85 
for eLib program, 85, 103 

external data flows, 27 
external libraries, see weakly typed 

containers 
external object flows, 21 
Extreme Programming (XP), 171 

fixpoint, 31 
flow information 

gen, kill, in, out sets, 30 
flow propagation algorithm, 18, 30 

backward propagation, 31 
convergence of, 31 
for declared type refinement, 48 
for object diagram recovery, 65 
forward propagation, 31 
in presence of containers, 52 
information associated with nodes, 30 
performance, 31 
properties of the solution, 31 

focusing, X, 18, 89 
on method of interest, 98 
usability of diagrams, 107 

fullName (User), 182(A) 

generic objects in interaction diagrams, 
95 

genetic algorithms for clustering, 143, 
154 

getAddress (User), 183(A) 
getArgs (Main), 186(B) 
getAuthors (Document), 180(A) 
getBorrower (Document), 180(A) 
getCode (Document), 180(A) 
getCode (User), 183(A) 
getDocument (Library) , 176(A) 
getDocument (Loan), 32, 38, 179(A) 
ge t ISBN (Document), 180(A) 

getName (User), 7, 183(A) 
getPhone (User), 183(A) 
getRefNo (TechnicalReport) , 182(A) 
g e t T i t l e (Document), 7, 180(A) 
getUser (Library) , 175(A) 
getUser (Loan), 32, 38, 178(A) 
guards 

in interaction diagrams, 109 
in state diagram, 116 

impact of change, see change impact 
analysis 

incomplete systems 
in interaction diagrams, 18, 89, 95 
in object sensitive OFG, 70 

infeasible paths, 3 
in interaction diagrams, 105 
in object diagram, 64, 77 

inheritance, see CLASS DIAGRAM 
i n s e r t (BinaryTre^), 70 
instrumented program, 65 
instrumenting a program, 74, 102 
inter-object structure, see INTERACTION 

DIAGRAMS 

INTERACTION DIAGRAMS, X, 10, 9 0 , 

see also dynamic interaction 
diagrams, sequence diagram, 
collaboration diagram 

test cases, 102 
accuracy, 92 
call graph, 98 
collaboration diagram, 18, 89, 90 
complexity reduction, 98 
conservative solution, 106 
construction of, 89 
dynamic approach, 91, 102 
flow propagation algorithm, 91 
focused interaction diagrams, 98 
generic objects, 95 
incomplete systems, 89, 95 
labels representing conditions, 109 
limitations of dynamic/static 

approach, 91, 106, 111 
method call resolution, 92, 96 
multiplicity of the objects, 92, 105 
numbering focused on a method, 100 
numbering of method calls, 99 
object identification, 105, 106 
partial view, 91, 103 
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recovering from C+H-, 173 
sequence diagram, 18, 89, 90 
source/target for addLoan (Library) , 

94 
source/target resolution, 91, 92, 96 
static approach, 91 
static vs. dynamic, 103, 105, 105 
test cases, 103, 103 
use of scenarios for recovery, 172 

interaction vs. object diagram, 90 
interaction vs. class diagram, 90 
interaction vs. state diagram, 117 
interfaces, see CLASS DIAGRAM 
i n t e r n a l l d ( i n t e rna lUse r ) , 6, 184(A) 
In t e rna lUse r ( In t e rna lUse r ) , 184(A) 
In t e rna lUse r class, 184(A) 
i s A v a i l a b l e (Document), 7, 179(A) 
ISBNCode (Document), 179(A) 
isHolding (Library) , 177(A) 
isHolding (Main), 188(B) 
isGut (Document), 179(A) 
isReserved (Document), 161, 163 
i sReserv ing (Library) , 161 

Java language, 21, see also abstract 
language 

class diagram for the language model, 
158 

containers, 27 
language model, 157 

Java Path Finder, 131 
Journa l ( Journa l ) , 181(A) 
Journa l class, 181(A) 

language model for Java, 157 
large software systems 

decomposition of, 133 
problems of, 18 

l e f t (BinaryTreeNode), 50, 66, 70 
l i b (Main), 79, 185(B) 
Libra ry (Library) 

abstract constructor declaration, 24 
L ibra ry class, 6, 175(A) 

abstract at t r ibute declaration, 24 
abstract constructor declaration, 24 
abstract method declaration, 24 
combined state diagrams, 130 
containers, 52, 55 
dependency relationship, 47 

Object Flow Graph, 26 
projected state diagrams, 129 
state diagram, 16, 169 
symbolic at tr ibute values, 16, 128 

life span of inter-object relationships, 9, 
75, 76 

Loan (Loan), 178(A) 
Loan class, 6, 178(A) 

aggregation/association relationship, 
47 

loan (Document), 7, 179(A) 
abstract domain, 125 
symboUc values, 15 

loans (Library) , 6, 175(A) 
abstract at tr ibute declaration, 24 
abstract domain, 128 
containers, 28, 29, 38 
insertion/extraction operations, 29 
OFG node, 26 
symbolic values, 16 

loans (User), 6, 111, 183(A) 
abstract domain, 126 
OFG node. 111 
symbolic values, 15 

Main class, 79, 185(B) 
Main driver, 78 
main (Main), 189(B) 
maintenance, 1 

adaptive maintenance, 2 
corrective maintenance, 2 
of eLib program, 159 
perfective maintenance, 2 
preventive maintenance, 2 

message 
nesting, 10, 90 
numbering, 99, 100, 101 
ordering, 10, 89, 102 

message exchange, see INTERACTION 
DIAGRAMS 

method activation, 103 
method dispatches, see INTERACTION 

DIAGRAMS 
method invocations 

in interaction diagram, 89 
in state diagrams, 14, 115 

misalignment of code and design, IX 
model checking, 131 
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model of source code, see O B J E C T 
F L O W G R A P H ( O F G ) 

multiplicity of the objects, 64, 76, 86, 
92, 105 

name conflicts in abstract language, 22 
name resolution, 22 
navigation in large diagrams, 3, see also 

focusing, visualization 
numbering of method calls, 99 

focused on returnDocument 
(Library), 101 

focused on a method, 100 
numberOfLoans (User), 183(A) 

obj (BinaryTreeNode), 50 
object 

internal behavior of, 115 
state of, 115 

ob jec t (BinaryTreeNode), 70 
OBJECT DIAGRAM, X, 8, 64, see also 

dynamic object diagram 
accuracy of, 73 
and interaction diagram, 65 
Aspect Oriented Programming, 87 
conservative solution, 77 
construction of, 65 
coverage of, 77 
dynamic approach, 63, 74 
flow propagation algorithm, 65 
for binary tree example, 68, 73 
for eLib program, 8, 82, 163 
infeasible paths, 64, 77 
multiplicity of the objects, 64, 76, 86 
nodes in, 76 
obj. insensitive vs. sensitive, 73 
object identification, 65 
object identifier, 32, 65, 74 
object sensitivity, 68 
partial view, 64, 77 
recovery from C + + , 173 
safety of solution, 74 
static approach, 63, 65 
static vs. dynamic, 64, 76, 86 
temporary objects, 10 
test cgLses, 74 
tracing facilities for construction of, 

74 

O B J E C T F L O W G R A P H (OFG), X, 18, 

21, 26 
addLoan (Library) , 39 
borrowDocument (Library) , 39 
accuracy of, 33 
containers, 27, 38, 40 
data/control flow sensitivity, 21 
edges, 26, 27, 28 
external data flows, 27 
for binary tree example, 67, 71, 72 
for class Library , 26 
for resolving calls in addLoan 

(Library), 93 
for eLib program, 36, 80, 81 
incremental construction of, 34, 69 
information propagated inside, 21, 30 
nodes, 26 
object insensitivity, 21, 33, 71 
object sensitivity, 21, 32, 33, 35, 68 , 

72 
object sensitivity vs. insensitivity, 33, 

70 
pointer analysis and, 40 

object identification in procedural code, 
60, 152 

object identity 
in interaction diagram, 105, 106 
in object diagram, 65 

object instances, 64 
object interactions, 10, 89 
Object Process Graph, 113, 172 
object vs. class diagram, 10, 63, 64, 83 
object vs. interaction diagram, 90 
object-oriented testing criteria, 87 
OFG, see O B J E C T F L O W G R A P H (OFG) 

orphan modules, in package diagram 

recovery, 154 
overridden methods, 81 

in numbering method calls, 100 

PACKAGE DIAGRAM, X, 19, 1 3 3 , 5ee also 

clustering, concept analysis 
clustering, 19, 136 
clustering vs. concept analysis, 154 
code properties for recovery, 135 
cohesion, 133, 141 
concept analysis, 19, 143 
coupling, 133, 141, 141 
for eLib program, 148, 153 
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package, 134 
scenarios for recovering, 135 
sub-packages, 134 

perfective maintenance, 2 
phoneNiunber (User), 183(A) 
points-to analysis, 40, 59, 113 
polymorphic calls, 81, 100 
preventive maintenance, 2 
principle of substitutability, 45 
p r i n t (Loan), 179(A) 
print facilities in eLib program, 7 
p r in tAl lLoans (Library) , 178(A) 

collaboration diagram focused on, 109 
p r in tAu tho r s (Document), 180(A) 
p r i n t A v a i l a b i l i t y (Document), 7, 

181(A) 
pr intDoc (Main), 188(B) 
printDocumentInfo (Library) , 178(A) 
p r i n t G e n e r a l l n f o (Document), 181(A) 
pr in tHeader (Document), 180(A) 
p r in tHeader (Main), 185(B) 
p r i n t l n f o (Book), 181(A) 
p r i n t l n f o (Document), 7, 181(A) 
p r i n t l n f o (TechnicalReport) , 182(A) 
p r i n t l n f o (User), 184(A) 
printRefNo (TechnicalReport) , 182(A) 
p r i n t R e s e r v a t i o n (Document), 161, 163 
p r i n t U s e r (Main), 188(B) 
p r i n t U s e r l n f o (Library) , 178(A) 

sequence diagram focused on, 110 
program change, 2, 155, 159 
program location, see also abstract 

syntax 
class attribute, 24 
class scoped, 32 
local variable, 24 
method parameter, 24 
object scoped, 32, 69 
r e t u r n , 24, 25, 40 
t h i s , 24, 25 
type declared for, 48 

program understanding, IX, 1, 89 

reengineering, 60, 61, 136 
refactoring, 19, 171 
refNo (TechnicalReport) , 6,182(A) 
relationships, 144 

aggregation, 45, ^7, 141 
aggregation vs. association, 46 

association, 45, 4Z 141 
call, 93, 98, 102, 136, 144, 150 
composition, 45, 141 
composition vs. aggregation, 46 
dependency, 45, 46, 59, 133, 134, 141 
generalization/inheritance, 45, 141 
realization, 45 
recovery of, 46 
usage of declared type, 46 

removeDocument (Library) , 6, 176(A) 
removeLoan (Document), 126, 180(A) 
removeLoan (Library) , 176(A) 
removeLoan (User), 15, 183(A) 
removeReservation (Library , 

Document, User), 160 
removeUser (Library) , 6, 175(A) 
Reserva t ion class, 160 
r e s e r v a t i o n (Document), 161 
reservation in eLib program, see also 

eLib program 
Reserva t ion class, 160 
addReservat ion (Library , 

Dociiment, User), 160 
c l ea rRes e rv a t i o n (Library), 160, 

163 
isReserved (Document), 161, 163 
i sReserv ing (Library) , 161, 164 
p r i n t R e s e r v a t i o n (Document), 161 
removeReservation (Library , 

Document, User), 160 
r e s e r v a t i o n s (Library) , 160, 163 
r e s e r v a t i o n s (User), 160, 163, 168 
r e s e r v a t i o n (Document), 161 
reserveDocument (Library) , 160, 

163, 164 
impact of change, 162 
impact on borrowDocument 

(Library) , 161 
test plan, 162 
UserDocumentAssociation class, 160 

r e s e r v a t i o n s (Library) , 160, 163 
r e s e r v a t i o n s (User), 160, 163, 168 
reserveDocument (Library) , 160, 163 

collaboration diagram focused on, 165 
restructuring, 2, 60, 133, 143, 152 
returnDoc (Main), 187(B) 
returnDocument (Library) , 7, 177(A) 

numbering method calls, 101 
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sequence diagram focused on, 12, 104, 
108 

RevEng tool, 172 
reverse engineering, 1 

outcome of, X, 3 
perspectives of, 170 

reverse engineering tools, 172 
Abstract Syntax Tree (AST) 

representation, 156 
AST vs. language model, 156 
general architecture for, 156 
impact on the development process, 

155 
language model representation, 156 
Model Extractor module, 157 
Object Flow Graph (OFG) represen­

tation, 157 
Parser module, 156 
system maintenance, 2 

r i g h t (BinaryTreeNode), 50, 66, 70 
ripple effects, IX, 155 
rmDoc (Main), 187(B) 
rmUser (Main), 186(B) 
roo t (BinaryTree), 66, 70 

search facilities in eLib program, 7 
searchDoc (Main), 188(B) 
searchDocumentByAuthors (Library) , 

7, 177(A) 
searchDocumentBylSBN (Library) , 7, 

178(A) 
seaxchDocumentByTitle (Library) , 7, 

177(A) 
abstract syntax, 55 

searchUser (Library) , 7, 177(A) 
searchUser (Main), 188(B) 
sequence diagram, 18, 89, 90 

Aspect Oriented Programming, 112 
flow of time, 10 
focused on addLoan (Library) , 95, 97 
focused on borrowDocument 

(Library) , 167 
focused on p r in tUse r In f o (Library) , 

110 
focused on returnDocument 

(Library) , 12, 104, 108 
method activation, 103 
temporal ordering of calls, 90 
time line, 90 

size of diagrams, 3 
interaction diagrams, 98, 107 
state diagram, 14, 115 

software evolution, IX, 1, 171 
software life cycle, 1, 171 
software metrics for component 

extraction, 153 
source code model, see OBJECT F L O W 

G R A P H (OFG) 

star diagram, 60 
state 

change of, 116 
complete, 14 
entry and exit actions, 116 

STATE DIAGRAM, X, 14, 1 1 6 

abstract domain, 118 
abstract interpretation, 118 
accuracy of, 123 
complete state, 14 
complexity reduction, 14, 115 
equivalence classes of at tr ibute 

values, 118, 123 
equivalent states, 116 
extraction of, 115 
for class Document, 14, 127, 168 
for class Library , 16, 129, 130, 169 
for class User, 14, 128, 168 
for coffee machine example, 117 
guards, 116 
limitations, 115 
method invocations, 14, 115 
over-conservative solution, 119 
primitive operations, 115 
projected, 128 
properties of, 116 
recovery algorithm for, 123 
states, 116 
sub-state diagrams, 116 
subset of attributes, 14 
transitions, 14, 115, 116 

state vs. interaction diagram, 117 
state-based testing, 131 
static analysis, 3 

conservative solution, 3, 77 
drawback of, 3, 91 
over-conservative solution, 3, 91 

static vs. dynamic object diagram, 10, 
64, 76, 86 

s t u d e n t s (UniversityAdmin), 50 
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symbolic attr ibute values, see also 
abstract domain, equivalence 
clgisses of at tr ibute values 

for class Library , 16 
for class User, 15 

symbolic execution, 131 
system behavior, 1, see INTERACTIONS 

DIAGRAM, STATE DIAGRAM 

system evolution, 1 
system organization, 1, 43 

TechnicalReport (TechnicalReport) , 
182(A) 

TechnicalReport class, 86, 182(A) 
test cases 

for binary tree example, 75 
for interaction diagram recovery, 102, 

103, 106 
for object diagram recovery, 63, 74 
for eLib program, 103 
usage of state diagram for generating, 

170 
test plan after changes, 162 
testing, 160, see also coverage testing 
time intervals in object diagram, 9, 75, 

75, 86 
t i t l e (Document), 179(A) 
tools, see also reverse engineering tools 

for modeling code with finite state 
models, 131 

for restructuring, 60 
for tracing programs, 74 

traceability, 2 

UML, see Unified Modeling Language 
(UML) 

Unified Modeling Language (UML), X, 
3 

UniversityAdmin class, 50 
usability of diagrams, 3, 43, 90, 98, see 

also focusing 
interaction diagram for eLib, 106 
static vs. dynamic interaction 

diagram, 106 
User (User), 183(A) 
User class, 6, 44, 182(A) 

state diagram, 14, 128, 168 
symbolic at tr ibute values, 15 

use r (Loan), 6, 7, 178(A) 
OFG edges, 27 

userCode (User), 182(A) 
UserDocumentAssociation class, 160 
u s e r s (Library) , 6, 175(A) 

abstract domain, 128 
containers, 28, 29, 55, 81 
insertion/extraction operations, 29 
symbolic values, 16 

visualization, X 
expanding/collapsing diagrams, 3 
explosion/implosion of diagrams, X 
hierarchical structuring, X 
interaction diagrams, 89, 98 
of large class diagram, 49 
use of Least Common Ancestor 

(LCA), 49, 54 

weakly typed containers, see containers 




